EFFECT OF TEMPERATURE ON OXYGEN CONSUMPTION AND AMMONIA EXCRETION IN EARTHWORM Libyodrilus violaceus (BEDDARD)

  • Temitope Dadewura Melefa
  • Stephen Olugbemiga Owa
Keywords: Earthworms, Libyodrilus violaceus, Oxygen consumption, Ammonia excretion, Thermal stress

Abstract

Libyodrilus violaceus, an Oligochate of the family Eudrilidae is a species of earthworm found in West Africa. To comprehend how organisms function physiologically, the knowledge of their metabolism is essential. In this present study, the effect of temperature on oxygen consumption and ammonia excretion in this earthworm was studied. Oxygen consumption and ammonia excretion were measured at different temperatures and at different body mass groups. The results obtained show that small sized earthworms produce more ammonia per gram body mass than the large-sized earthworms. This implies that small sized earthworms or juveniles will better convert organic materials into vermicompost than the large sized worms or adult worms. Also, at higher and lower temperatures the earthworms produce more ammonia and consume less oxygen, this could lead to injury and even death of the earthworms. This suggests that temperature could be a limiting factor in vermicoposting and vermiculture. In addition to providing basic data on the ecophysiology of Libyodrilus violaceus, the results from this study give some information that may be useful in vermiculture and vermcomposting. Since small sized worms produce more ammonia than adult or larger sized worm, efforts should be made in rearing more juvenile worms in vermiculture that will be useful in vermicompost since their physiological activities depend on their intake.

References

Asgari Safdar, A. H., and Moradi Kor, N. (2014). Vermicompost and Verminculture: Structure, Benefits and Usage. International Journal of Advanced Biological and Biomedical Research, 2(3), 775-782.

Babuthangadurai, A., A. Jawahar, P. Chitrarasu, S. Alawdeen and John B. A. (2014): Impact of stress on excretion in earthworm (Perionyx excavatus). – Journal of Sustainability Science and Management 9: 128–133.

Blair, J.M., Parmelee, R.W., Allen, M.F., McCartney, D.A., and Stinner, B.R. (1997). Changes in soil N pools in response to earthworm population manipulations in agroecosystems with different N sources. Soil Biol. Biochem. 29 361–367. https://doi.org/10.1016/S0038-0717(96)00098-3 DOI: https://doi.org/10.1016/S0038-0717(96)00098-3

Blouin, M., Barrere, J., Meyer, N. et al. (2019). Vermicompost significantly affects plant growth. A meta-analysis. Agron. Sustain. Dev. 39, 34 https://doi.org/10.1007/s13593-019-0579-x DOI: https://doi.org/10.1007/s13593-019-0579-x

Cohen, S., and Lewis, H. B. (1949). The Nitrogenous Metabolism of the Earthworm, (Lumbricus terrestris), J. Biol. Chem., 180: 79-91. DOI: https://doi.org/10.1016/S0021-9258(18)56725-9

Dada, E.O., Njoku, K.L., Osuntoki, A.A. and Akinola MO. (2013) Evaluation of the responses of a wetland, tropical earthworm to heavy metal contaminated soil. Analysis. 1:47–52. DOI: https://doi.org/10.11648/j.ijema.20130102.12

De Robertis. E.M, and De Robertis E. Jnr. (1979) Cell and Molecular Biology. (5th Edition) Pergamon Press Oxford. Pp 109-110.

Edwards CA, Bohlen PJ (1996) Biology and Ecology of Earthworms, Ed 3. Chapman and Hall, London, p. 426. [Google Scholar]

Gergs, A., Rakel, K., Bussen, D., Capowiez, Y., Ernst, G. and Roeben, V. (2022) Integrating earthworm movement and life history through dynamic energy budgets. Conserv Physiol. 7;10(1):coac042. doi: 10.1093/conphys/coac042. PMID: 35769332; PMCID: PMC9235907. DOI: https://doi.org/10.1093/conphys/coac042

Ghosh, C. (2004). Integrated Vermi-pisiculture – An alternative option for recycling of solid municipal waste in rural India, Bioresource Technology 93, 71-775. DOI: https://doi.org/10.1016/j.biortech.2003.09.014

Gilman, S.E., Jennifer, W. H. and Chen, S. (2013). Oxygen Consumption in Relation to Body Size, Wave Exposure, and Cirral Beat Behavior in the Barnacle Balanus Glandula, Journal of Crustacean Biology, Volume 33, Issue 3, 1 May 2013, Pages 317–322, https://doi.org/10.1163/1937240X-00002147 DOI: https://doi.org/10.1163/1937240X-00002147

Harper, J.K and Greaser, G.L (1994). Agricultural Alternative production. U.S. Department of Agriculture – Extension Bulletin.

Hochacka, P., (1973): comparative intermediary metabolism. In: comparative Animal Physiology. 3rd Ed. Prosser, W.B, Saunders co., Philadelphia, pp. 212-278.

Jordan E.L., and Verma P.S., (2002). Invertebrate Zoology S. Chand and Company Ram Nagar, New Delhi – 10055pp 537-538.

Lang, B., and Russell, D. J. (2022). Excretion of nitrogenous waste by soil fauna and assessment of the contribution to soil nitrogen pools. Soil Organisms, 94(2), 59–83. https://doi.org/10.25674/so94iss2id182

Marco Parolini, Andrea Ganzaroli, Jacopo Bacenetti (2020). Earthworm as an alternative protein source in poultry and fish farming: Current applications and future perspectives. Science of The Total Environment, 734, 139460. DOI: https://doi.org/10.1016/j.scitotenv.2020.139460

1016/j.scitotenv.2020.139460

Müller M., Mentel, M., van Hellemond, J.J., Henze, K., Woehle, C., Gould, S.B., Yu, R.Y., van der Giezen, M., Tielens, A.G. and Martin, W.F. (2012). Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. Jun;76(2):444-95. doi: 10.1128/MMBR.05024-11. PMID: 22688819; PMCID: PMC3372258. DOI: https://doi.org/10.1128/MMBR.05024-11

Norin, T. and Metcalfe, N.B. (2019). Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Philos Trans R Soc Lond B Biol Sci. Mar 18;374(1768):20180180. doi: 10.1098/rstb.2018.0180. PMID: 30966964; PMCID: PMC6365862. DOI: https://doi.org/10.1098/rstb.2018.0180

Nye, P.H (1995). Some soil forming process in the humid tropics. The action of soil Fauna. Ph.D. thesis, London

Ogunlaja, A. and Morenikeji OA. (2013). Species diversity and population size of earthworms after oil spillage in a pipeline vandalized area in Lagos State, Nigeria. Afr J Agri Res. 8:10–19.

Ogunlaja, A., Sharma, V., Ghai, M. and Lin, J. (2020) Molecular characterization and DNA methylation profile of Libyodrilus violaceous from oil polluted soil. Mol Biol Res Commun. 2020 Jun;9(2):45-53. doi: 10.22099/mbrc.2019.35242.1449. PMID: 32802898; PMCID: PMC7382398.

Owa, S.O Moreyibi, O. H Dedeke, G.A. Olojo F.O AND Fasunwon O.O. (2004). Earthworm – created Microenvironment Around Root of Lowland rice J.Sc., Engr. And Tech. (1), 52161-5270.

Phillipson, J., and P. J. Bolton (1976). The Respiratory Metabolism of Selected Lumbricidae. Oecologia, vol. 22, no. 2, pp. 135–52. DOI: https://doi.org/10.1007/BF00344713

Rehman, S.U., De Castro, F., Aprile, A., Benedetti, M. and Fanizzi, F.P. (2023). Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 13(4):1134. https://doi.org/10.3390/agronomy13041134. DOI: https://doi.org/10.3390/agronomy13041134

Satchell “Lumbricidae. In: Soil Biology ABurges and F Raw (eds). Academic Press New York. Pp259-322. DOI: https://doi.org/10.1016/B978-0-12-395699-6.50013-4

Singh, J., Schädler, M., Demetrio, W., Brown, G. G. and Eisenhauer, N. . (2020). Climate change effects on earthworms - a review. Soil Organisms, 91(3), 113–137. https://doi.org/10.25674/so91iss3pp114

Tillinghast, E. K., D. C. McInnes and R. A. Duffill (1969): The effect of temperature and water availability on the output of ammonia and urea by the earthworm Lumbricus terrestris L. – Comparative Biochemistry and Physiology 29: 1087–1092. DOI: https://doi.org/10.1016/0010-406X(69)91012-3

Whalen, J. K., R. W. Parmelee and Subler, S. (2000): Quantification of nitrogen excretion rates for three lumbricid earthworms using 15N. – Biology and Fertility of Soils 32: 347–352. DOI: https://doi.org/10.1007/s003740000259

Published
2023-12-31
How to Cite
MelefaT. D., & OwaS. O. (2023). EFFECT OF TEMPERATURE ON OXYGEN CONSUMPTION AND AMMONIA EXCRETION IN EARTHWORM Libyodrilus violaceus (BEDDARD). FUDMA JOURNAL OF SCIENCES, 7(3), 336 - 342. https://doi.org/10.33003/fjs-2023-0703-2391