PREPARATION AND CHARACTERISATION OF ZnO THIN FILMS DEPOSITED BY RF SPUTTERING METHOD

Authors

  • Bilyaminu Abdullahi USMANU DANFODIYO UNIVERSITY SOKOTO
  • S. Abdullahi
  • M. B. Abdullahi
  • A. M. Wara

DOI:

https://doi.org/10.33003/fjs-2023-0706-2201

Keywords:

Zinc oxide, Microwave annealing (MWA), open-air annealing (OAA), RF Sputtering, XRD

Abstract

Zinc oxide (ZnO) thin films deposited on corning glass substrates at 100ºC substrate temperature by radio frequency deposition were annealed the open air and icrowave oven at 150ºC. The influence of open-air annealing (OAA) and microwave annealing (MWA) were studied. The results obtained showed that MWA annealing can improve not only the crystal but also the optical properties of the ZnO thin films. A high transmittance is obtained in all the annealed samples (S1, S2, S4 and S5) demonstrating >90% at 650 nm wavelength. Reflectance in all the samples was < 29% with a minimum standing at 23.78% as recorded for sample S5. The band gap for the annealed samples (S1, S2, S4 and S5) was determined at 3.26 eV, 3.32 eV, 3.29 eV and 3.34 eV respectively. Absorption coefficient stood at 0.0225 cm-1, 0.0179 cm-1, 0.0180 cm-1, 0.0186 cm-1 and 0.0181 cm-1 for the as-deposited sample and the respectively. The optical and structural properties analysis showed that OAA and MWA annealing at suitable temperatures considered can significantly improve some properties of the ZnO thin films making the films suitable for applications in optoelectronics and photovoltaics.

References

Anish M., Fabian B., Jesper G. A., Fredrik H., (2016). “A review of solar Energy Based heat and power generation Systems”, Renewable and Sustainable Energy Reviews, vol. 67, pp. 1047–1064.

Balema V., (2009). “Alternative Energy Photovoltaics, Ionic Liquids, and MOFs,” Material Matters, vol. 4, no. 4, p. 1.

Du H. J., Wang W. C., and Zhu J. Z., (2016). “Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency,” Chinese Physics B, vol. 25.

Aditi T., Akshay J., Vipul K., Opanasyuk A. S., and Panchal C. J., (2017). “Numerical Simulation of Tin Based Perovskite Solar Cell: Effects of Absorber Parameters and Hole Transport Materials”, Journal of Nano and Electronic Physics. Vol. 9 No 3, 03038(4pp) DOI: 10.21272/jnep.9(3).03038

Hossain M. I., Nouar T., and Fahhad H. A., (2015). "Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells." Solar Energy 120: 370-380.

Salah M. M., Kamel M. H., Mohamed A., and Ahmed S., (2018) “A Comparative Study of Different ETMs in Perovskite Solar Cell with Inorganic Copper Iodide as HTM”, Optik, https://doi.org/10.1016/j.ijleo.10.052

Usha M., Victor V. S., Thyagarajan K., Raja R. M., and Babu B. J., (2017). “Design andsimulation of high efficiency tin halide perovskite solar cell”, International journal of renewable energy research Vol.7, No.4

Huang L., Sun X., and Li C., (2016). “Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation”, Solar Energy Materials and Solar Cells, vol. 157, pp. 1038–1047.

Minemoto T., and Murata M., (2014). “Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation,” Current Applied Physics, vol. 14, pp. 1428–1433.

Bube R.H., (1998). Photovoltaic Materials. London: Imperial College Press.

Burgelman M., Nollet P., and Degrave .S., (2000). Thin Solid Films 361, 527.

Mohammed Y. O., Joshua A. O., Jessica A. U., Alex B. B., and Ugbe R. U., (2020). “The study and characterization of lead-free tin perovskite solar cell with high efficiency using SCAPS”, Journal of NAMP. Vol 55. P139-153

Gu Y.F., Du H.J., Li N.N., Yang L., and Zhou C.Y., (2019). “Effect of carrier mobility on performance of perovskite solar cells”. Chinese physicist B, 28(4): 048802

Behrouznejad F., Shahbazi S., Taghavinia N., Diau H.P. Wu, and E. W.G., (2016). “A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells”, Journal of Materials Chemistry A, vol. 4, pp. 13488–13498.

Haider S. Z., Anwar H. and Wang M., (2018). “A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material”, Semiconductor Science and Technology 33035001. 12pp.

Burschka .J. Pellet N., Moon S.J., Humphry-Baker R., Gao P., Nazeeruddin M.K., and Gratzel M., (2013). Sequential deposition as a route to high-performance Perovskite sensitized solar cells. Nature 499, 316–319.

Casas, G. A., Cappelletti, M. A., Cédola, A. P., Soucase, B. M., and Blancá, E. P. (2017). Analysis of the power conversion efficiency of perovskite solar cells with different Material as Hole-Transport Layer by numerical simulations. Super lattices and Microstructures, 107, 136-143.

Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., and Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 1228604.

Liu, F., Zhu, J., Wei, J., (2014). “Numerical simulation: toward the design of high Efficiency planar perovskite solar cells,” Applied Physics Letters, vol. 104, article 253508.

Liu P., Singh V. P., Jarro C. A., and Rajaputra S., (2011). “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS – CdTe solar cells,” Nanotechnology, vol. 22, no. 14.

Chen Q.Y., Huang Y., Huang P.R., Ma T., Cao C., and He Y. (2016). “Electro negativity Explanation on the efficiency-enhancing mechanism of the hybrid inorganic-organic perovskite ABX3 from first principles study” China Physics B, DOI:10.1088/1674- 1056/25/2/027104, Vol. 25, No. 2pp.027104-1-6.

Fahrenbruch A.L., and Bube R.H., (1983). Fundamentals in Solar Cells. New York: Academic Press.

Stamate M. D., (2003). "On the dielectric properties of dc magnetron TiO2 thin films", Applied Surface Science 218, no. 1-4: 318-323.

Rahman I., Sakib F., Sarwar A., and Tanvir I. D., (2017). "A comparative study on different HTMs in perovskite solar cell with ZnOS electron transport layer." In Humanitarian Technology Conference (R10-HTC), IEEE Region 10, pp. 546-550. IEEE.

Christians J. A., Raymond C. F., and Prashant V. K., (2013) "An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide", Journal of the American Chemical Society 136, no. 2. 758-764.

Sepalage G. A., Steffen M., Alexander P., Andrew D., Scully F. H., Udo B., Leone S., and Yi B. C., (2015). "Copper (I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J–V hysteresis." Advanced Functional Materials 25, no. 35: 5650- 5661.

Frolova L. A., Dremova N. N., and Troshin P. A., (2015). “The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium–lead iodide (MAPbI3) Perovskite solar cells.” Chemical Communication 51. 14917–14920.

Fahrenbruch, A. L., and Bube, R. H,. (1983). Fundamentals of Solar Cells: Photovoltaic SolarEnergy Conversion. St Louis: Academic Press, 231-4

Published

2024-02-07

How to Cite

Abdullahi, B., Abdullahi, S., Abdullahi, M. B., & Wara, A. M. (2024). PREPARATION AND CHARACTERISATION OF ZnO THIN FILMS DEPOSITED BY RF SPUTTERING METHOD. FUDMA JOURNAL OF SCIENCES, 7(6), 329 - 338. https://doi.org/10.33003/fjs-2023-0706-2201