NEW GENERALIZED ODD FRÉCHET-ODD EXPONENTIAL-G FAMILY OF DISTRIBUTION WITH STATISTICAL PROPERTIES AND APPLICATIONS

  • Ibrahim Abubakar Sadiq
  • S. I. S. Doguwa
  • Abubakar Yahaya
  • Jamilu Garba
Keywords: New Generalized Odd Fréchet-G Family, Moments, Hazard functions, Maximum Likelihood, Monte Carlo Simulations

Abstract

A new lifetime continuous probability distribution called the new Generalized Odd Fréchet-Odd-Exponential-G Family of Distribution is developed using the principle of Alzaatreh. The developed distribution is flexible for studying positive real-life datasets. The statistical properties related to this family are obtained. The parameters of the family were estimated by using a technique of maximum likelihood. A NewGeneralized Odd Fréchet-Odd-Exponential-Weibull model is introduced. This distribution was fitted with a set of lifetime data. A Monte Carlo simulation is applied to test the consistency of the estimated parameters of this distribution in terms of their bias and mean squared error with a comparison of M.L.E and the maximum product spacing (MPS).The outcome of the Monte Carlo simulation shows that the M.L.E method is the best technique for estimating the parameter of the New Generalized Odd Frechet-Odd-Exponential-Weibull distribution and the New Generalized Odd Frechet-Odd-Exponential-Rayleigh distribution than the M.PS method. The outcomes of the application on the data set produce a higher flexibility than some of the competing distributions. The distributions serve as a viable alternative to other distributions available in the literature for modelling positive data.

References

Alizadeh, M., Cordeiro, G. M., Nascimento, A. D., Lima, M. D. C. S., & Ortega, E. M. (2017a). Odd-Burr Generalized Family of Distributions with Some Applications. Journal of Statistical Computation and Simulation, 87(2), 367-389. https://doi.org/10.1080/00949655.2016.1209200 DOI: https://doi.org/10.1080/00949655.2016.1209200

Alizadeh, M., Ghosh, I., Yousof, H. M., Rasekhi, M.,& Hamedani, G. G. (2017b). The Generalized Odd Generalized Exponential Family of Distributions: Properties, Characterizations and Application. Journal of Data Science, 15(3), 443-465.DOI=10.6339/JDS.201707 DOI: https://doi.org/10.6339/JDS.201707_15(3).0005

Aljarrah, M. A., Lee, C., &Famoye, F. (2014). On Generating TX Family of Distributions Using Quantile Functions. Journal of Statistical Distributions and Applications, 1, 1-17. https://doi.org/10.1186/2195-5832-1-2 DOI: https://doi.org/10.1186/2195-5832-1-2

Aslam, M., Asghar, Z., Hussain, Z., & Shah, S. F. (2020). A Modified TX Family of Distributions: Classical and Bayesian Analysis. Journal of Taibah University for Science, 14(1), 254- 264. https://doi.org/10.1080/16583655.2020.1732642 DOI: https://doi.org/10.1080/16583655.2020.1732642

Fulment, A. K., Gadde, S. R., & Peter, J. K. (2023). The odd log-logistic generalized exponential distribution: Application on survival times of chemotherapy patients data. F1000Research, 11, 1444.https://doi.org/10.12688/f1000research.127363.2 DOI: https://doi.org/10.12688/f1000research.127363.2

Bourguignon, M., Silva, R. B., & Cordeiro, G. M. (2014). The Weibull-G family of probability distributions. Journal of data science, 12(1), 53-68. DOI: https://doi.org/10.6339/JDS.201401_12(1).0004

Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modelling Failure Time Data by Lehman Alternatives. Communications in Statistics-Theory and Methods, 27(4), 887-904. https://doi.org/10.1080/03610929808832134 DOI: https://doi.org/10.1080/03610929808832134

Kajuru, J. Y., Dikko, H. G., Mohammed, A. S., & Fulatan, A. I. (2023). Odd Gompertz-G Family of Distribution, Its Properties and Applications. Fudma Journal of Sciences, 7(3), 351-358. DOI: https://doi.org/10.33003/fjs-2023-0703-2034

Reyad, H., Othman, S., &Ul Haq, M. A. (2019). The Transmuted Generalized Odd Generalized Exponential-G Family of Distributions: Theory and Applications. J. Data Sci, 17, 279-300. DOI:10.6339/JDS.201904 DOI: https://doi.org/10.6339/JDS.201904_17(2).0003

Sadiq, I. A., Raghav, J. S., & Sharma, S. K. (2020). Conglomeration of General Linear Model for Epilepsy Clinical Neuroimaging. Asian Journal of Probability and Statistics, 10(2), 1-12. DOI: 10.9734/AJPAS/2020/v10i230241 DOI: https://doi.org/10.9734/ajpas/2020/v10i230241

Sadiq, I. A., Doguwa, S. I., Yahaya, A., & Garba, J. (2023). New Generalized Odd Fréchet-G (NGOF-G) Family of Distribution with Statistical Properties and Applications. UMYU Scientifica, 2(3), 100-107. DOI: https://doi.org/10.56919/usci.2323.016

Suleiman, A. A., Daud, H., Singh, N. S. S., Ishaq, A. I., & Othman, M. (2023). A New Odd Beta Prime-Burr X Distribution with Applications to Petroleum Rock Sample Data and COVID-19 Mortality Rate. Data, 8(9), 143. DOI: https://doi.org/10.3390/data8090143

Tahir, M. H., Cordeiro, G. M., Alzaatreh, A., Mansoor, M., & Zubair, M. (2016). The Logistic-X Family of Distributions and its Applications. Communications in statistics-Theory and methods, 45(24), 7326-7349. https://doi.org/10.1080/03610926.2014.980516 DOI: https://doi.org/10.1080/03610926.2014.980516

Published
2023-12-20
How to Cite
Sadiq I. A., Doguwa S. I. S., Yahaya A., & Garba J. (2023). NEW GENERALIZED ODD FRÉCHET-ODD EXPONENTIAL-G FAMILY OF DISTRIBUTION WITH STATISTICAL PROPERTIES AND APPLICATIONS. FUDMA JOURNAL OF SCIENCES, 7(6), 41 - 51. https://doi.org/10.33003/fjs-2023-0706-2096

Most read articles by the same author(s)