EVALUATING THE PERFORMANCE OF GPS-BASED NAVIGATION SYSTEMS DURING GEOMAGNETIC STORMS USING DIFFERENT PSEUDORANGE MEASUREMENTS

  • A. O. Adewale
  • E. O. Oyeyemi
  • O. O. Oyebola
  • O. O. Odeyemi
  • B. Olugbon
  • J. A. Odetola
  • R. T. Akindolire
  • A. A. Obafaye
Keywords: geomagnetic storms, pseudorange measurements, TEC, propagation delay, Global Positioning System

Abstract

Geomagnetic storms have significant space-weather effects on space and ground-based Global Positioning System (GPS). The signals from GPS suffer degradation and delay during propagation from space to ground-based receivers, as they travel through the ionosphere. Comparison of GPS positioning 3-D vertical (MRSE) and horizontal (DRMS) root mean squared positioning errors obtained from different pseudorange measurements at low, mid and high latitude stations has been reported. GPS observation data were examined from 6th-12th November 2004, using different pseudorange measurements. Our results show that geomagnetic storms and latitudinal variation have little significance on the positioning. Dual frequency receivers recorded low errors compared to single frequency receivers. Generally, single-frequency GPS receivers on L1 C/A and L1 P codes measurement are more accurate and reliable than the one on L2 P-code. Measurement on the ionosphere-free combination dual frequency receivers (C/A on L1 and P on L2) recorded more significant errors compared to the ionosphere-free L1/L2 combination (P on L1 and P on L2). Our results show that other factors played a significant role in poor positioning errors.

References

Aarons, J. (1982). Global morphology of ionospheric scintillations, Proceedings of the IEEE70, 360-378.

Aaron, J. and Basu, S. (1994). Ionospheric amplitude and phase fluctuations at the GPS frequencies. Proceedings of ION GPS 94, 1569-1578.

Adekunle, I.O. (2014). An assessment of ionospheric error mitigation techniques for GNSS estimation in the low equatorial African region. Positioning 5(1): 27-35. doi: 10.4236/pos.2014.51004.

Adewale, A.O. Oyeyemi, E.O. Adeloye, A.B. Adedokun, M.B. (2013). Ionospheric effects of geomagnetic storms at Hobart and comparisons with IRI model predictions. Journal of Scientific Research and Development 14: 98 – 105

Adewale, A.O., Oyeyemi, E.O., Adeloye, A.B., Mitchel, C.N., Rose, J.A.R. and Cilliers, P.J. (2012). A study of L-band scintillations and total electron content at an equatorial station, Lagos, Nigeria. Radio Science 47(2): RS2011, https://doi.org/10.1029/2011RS004846

Akala, A. O., Doherty, P. H., Carrano, C. S., Valladares, C. E. and Groves, K. M. (2012). Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications. Radio Science 47 (4) RS4007, doi.org/10.1029/2012RS004995

Bagiya, M. S. . Joshi, H. P. Iyer, K. N. Aggarwal, M. Ravindran, S. andPathan, B. M. (2009). TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. AnnalesGeophysicae27: 1047–1057.

Basu, S. Mackenzie, E. and Basu, S. (1988). Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Science 23: 363.

Bent, R. B. Llewellyn, S.K. Nesterezuk, G. and Schmid, P.E. (1976). The development of a highly successful worldwide empirical ionospheric model, in Effect of the Ionosphere on Space Systems and Communications, J. Goodman (Eds). Nat. Tec. Inf. Serv., Springfield, Va, USA.

Bhattacharya, S. Dubey, S. Tiwari, R. Purohit, P.K. and Gwal, A.K. (2008). Effect of magnetic activity on ionospheric time delay at low latitude. Journal of Astrophysics and Astronomy 29, 269.

Bhattacharya, S. Purohit, P. K. and Gwal, A. K. (2009). Ionospheric time delay variations in the equatorial anomaly region during low solar activity using GPS. Indian Journal of Radio and Space Physics 38(5): 266-274.

Bilitza, D. and Reinisch, B. W. (2008). International reference ionosphere 2007: Improvements and new parameters. Advances in Space Research 42: 599-609.

Dashora, N. Sharma, S. DabasR.S. Alex, S. and Pandey, R. (2009). Large enhancements in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone. AnnalesGeophysicae 27(5): 1803-1820.

Doherty, P. Delay, S. Valladares, C. and Klobuchar, J. (2000). Ionospheric scintillation effects in the equatorial and auroral regions, In: Proceedings of ION GPS-2000, Salt Lake City, pp662.

Dubey, S. Wahi, R. and Gwal, A.K. (2006). Ionospheric effects on GPS positioning. Advances in Space Research 38 (11): 2478–2484.

El-naggar, A. M. (2011). Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data. Alexandria Engineering Journal50(3): 237-243 https://doi.org/10.1016/j.aej.2011.03.003

Goswami, S. Paul, A. and Haldar, S. (2018). Study of Relative Performance of Different Navigational Satellite Constellations Under Adverse Ionospheric Conditions. Space Weather 16(6): 667-675

Groves, K.M. Basu, S. Quinn, J.M., Pedersen, T.R., Falinski, K. (2000). A comparison of GPS performance in a scintillation environment at Ascension Island, in: Proceedings of the ION GPS 2000, September 2000, Salt Lake City, UT, 2000.

Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J. (2001). Global positioning system: Theory and practice, 5th Ed., Springer, Berlin

Jain, At. Sunita T. Sudhir J. and Gwal, A.K. (2010). TEC response during severe geomagnetic storms near the crest of equatorial ionization anomaly. Indian Journal of Radio and Space Physics 39(1):11-24

Jakowski, N. Schlüter, S. and Sardon, E. (1999). Total electron content of the ionosphere during the geomagnetic storm on 10 January 1997. Journal of Atmospheric and Solar-Terrestrial Physics 61(3): 299-307.

Kintner, P. M. and. Ledvina, B. M. (2005). The ionosphere, radio navigation, and global navigation satellite systems. Advances in Space Research 35(5): 788-811.

Klobuchar, J. A. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on aerospace and electronic systems 3: 325-331.

Langley, R.B. (1999). Dilution of precision. GPS World, 10: 52-59.

Liu, J. Zhao, B. and Liu, L. (2010). Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances. AnnalesGeophysicae 28: 795-805, https://doi.org/10.5194/angeo-28-795-2010

Misra, P. and Enge, P. (2006). GPS measurements and error sources. In: Global Positioning System: Signals, measurements, and performance, G. Gao and F. Walter (eds), Ganga-Jamuna Press, U.S.A., pp. 185-194.

Nava, B. P. Coisson, and Radicella, S. M. (2008). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics 70(15): 1856-1862.

Park, M.H. and Gao, Y. (2008). Error performance analysis of MEMS-based inertial sensors with low-cost GPS receiver. Sensors 8: 2240-2261.

Prasad, N. and Sarma, A. D. (2004). Ionospheric time delay estimation using IDW grid model for GAGAN. Journal of Indian Geophysical Union 8(4): 319-327.

Radicella, S. M. and Leitinger, R. (2001). The evolution of the DGR approach to model electron density profiles. Advances in Space Research 27(1): 35-40.

Rishbeth, H. and Garriott, O.K. (1969). Introduction to Ionospheric Physics, Academic Press, New York, pp 98-108.

Sahai, Y. Fagundes, P. R. De Jesus, R. De Abreu, A. J. Crowley, A. J. G. Kikuchi, T. Huang, C.-S. Pillat, V.G. Guarnieri, F. L. Abalde, J.R. and Bittencourt, J.A. (2011). Studies of ionospheric F-region response in the Latin American sector during the geomagnetic storm of 21–22 January 2005. AnnalesGeophysicae. 29(5): 919–929.

Skone, S. K. Knudsen, and De Jong, M. (2001). Limitations in GPS Reciever Tracking Performance UnderIonospheric Scintillation Conditions. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26(6–8): 613-621.

Trajkovski, K. K. Sterle, O. and Stopar, B. (2010). Study of positioning with high sensitivity GPS sensors under adverse conditions. Sensors 10(9): 8332-8347.

Tsurutani, B. Anthony, M. Byron, I. Mangalathayil, A. A. Jose H. A. Sobral, Walter, G. Fernando, G. Toshitaka, T. Akinori, S. Kiyohumi, Y. Bela, F. Timothy J. Fuller-Rowell, Janet Kozyra, John C. Foster, AntheaCoster, and Vytenis M. Vasyliunas (2004). Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. Journal of Geophysical Research: Space Physics 109: A08302, doi:10.1029/2003JA010342.

Vlasov, M. Kelley, M. C. andKil, H. (2003). Analysis of ground-based and satellite observations of F-region behavior during the great magnetic storm of July, 2000. Journal of Atmospheric and Solar-Terrestrial Physics 65: 1223–1234.

Yermolaev, Yu I. Zelenyi, L. M. Kuznetsov, V. D. Chertok, I. M. Panasyuk, M. I. Myagkova, I. N. Zhitnik, I. A. Kuzin, S. V. Eselevich, V. G. Bogod, V. M. Arkhangelskaja, I. V. Arkhangelsky, A. I. Kotov, Yu D. (2008). Magnetic storm of November, 2004: Solar, interplanetary, and magnetospheric disturbances. Journal of Atmospheric and Solar-Terrestrial Physics 70, 334– 341

Zhao, B. Wan, W. and Liu, L. (2005). Responses of equatorial anomaly to the October-November 2003 superstorms. AnnalesGeophysicae 23(3): 693–706.

Published
2023-04-11
How to Cite
AdewaleA. O., OyeyemiE. O., OyebolaO. O., OdeyemiO. O., OlugbonB., OdetolaJ. A., AkindolireR. T., & ObafayeA. A. (2023). EVALUATING THE PERFORMANCE OF GPS-BASED NAVIGATION SYSTEMS DURING GEOMAGNETIC STORMS USING DIFFERENT PSEUDORANGE MEASUREMENTS. FUDMA JOURNAL OF SCIENCES, 3(3), 546 - 566. Retrieved from https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1602