MEASUREMENTS OF SINGLE-MODE FIBER OPTICS ATTENUATION/LOSS USING BIDIRECTIONAL TEST TECHNIQUE

Authors

  • J. Ilouno
  • M. Awoji
  • B. J. Akeredolu
  • B. J. Kwaha
  • N. M. D. Chagok

Keywords:

Attenuation, OTDR, Bidirectional, Mono-directional

Abstract

One of the effects of attenuation in fiber link is the weakening of the strength of signal as it travels down the fiber. This effect, if not checked or controlled, leads to poor quality network or communication failure. An Optical Time Domain Reflectometer (OTDR) was used to measure the actual attenuations in single-mode fiber using bidirectional techniques. This method handled the limitations posed by the mono-directional technique. The OTDR was able to establish the attenuation in every portion of the fiber under test. Averaging the two mono-directional results (bidirectional analysis) gave a better attenuation limit of 0.191dB/km for 1550 nm signal over the span length of 16.60 km which is within the acceptable standard range of 0.20 dB/km to 0.30 B/km. Hence, quality signal transmissions can be achieved along these routes (fiber core 05 to core 32).

References

Afolayan, M. O., Yawas, D. S., Folayan, C. O., & Aku, S. Y. (2012). Mechanical Description of a Hyper-Redundant Robot Joint Mechanism Used for a Design of a Biomimetic Robotic Fish. Journal of Robotics, 2012, 1-16.

Afolayan, M. O., & Iorpenda, M. J. (2021). Plain Swimming Algorithm for a Mackerel (Scomber scombrus) Robotic Fish. Nigerian Research Journal of Engineering and Environmental Sciences, 6(2) 2021 pp. 783-793.

Afolayan, M.O., Yawas, D. S., Folayan, C. O., & Aku, S.Y. (2014) A Design of Bump Sensor Mechanism for Robotic Fish. British Journal of Applied Science and Technology 5(6): 568-579. 2015

Andrés, M., Juan, J. R., Iván R., Jaime del C., & Antonio, B. (2020). Design of a Hyper-Redundant Robot and Teleoperation Using Mixed Reality for Inspection Tasks. Sensors. 20(8), 2181, DOI:10.3390/s20082181

Anderson, J. M. (1996). Vorticity control for efficient propulsion. Ph.D. dissertation, Massachusetts Institute of Technology/Woods Hole Oceanographic Institute Joint Program, Woods Hole, MA.

Breder, C. M. (1926). The locomotion of fishes. Zoological, 4, 159–297.

Daou, H. E., Salumae, T., Toming, G., & Kruusmaa, M., (2012). A bio-inspired compliant robotic fish: Design and experiments. In IEEE International Conference on Robotics and Automation (pp. 5340-5345). Saint Paul, MN, USA., doi: 10.1109/ICRA.2012.6225321.

Jindong, L., & Huosheng, H., (2007). A methodology of modelling fish-like swim patterns for robotic fish. In Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation (pp. 1316–1321). Harbin, China.

Kevin, J. D. (1997). Limbless locomotion: learning to crawl with a snake robot. A Ph.D. thesis at the Robotics Institute Carnegie Mellon University, 5000 Forbes Avenue, Pittsburg, PA 15213.

Li, Z., Ge, L., & Xu, W. (2018). Turning Characteristics of Biomimetic robotic fish driven by two degree of freedom of pectoral fins and flexible body/caudal fin. International Journal of Advanced Robotic Systems. 2018: 1-12

Logico, M. G. (2006). “Navy Diver Sets Record with 2,000 foot Dive”, http://www.military.com/features/0,15240,108883,00.html. Accessed: 18-May-2022.

Marchese, A. D., Onal C. D., & Rus, D. (2014). Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robotics, 1(1), 75-87.

Mark, C. (2021). Advances in underwater robots. http://www.asme.org/topics-resources/content/advances-in-underwater-robots. Accessed: 04-June-2022

Martins, O. O., Aribisala, A. A., Adeyemi, H. O., Adekunle, A. A., Oyelaran, O. A. (2019). Dual Mode Mobile Surveillance Robot. FUDMA Journal of Sciences (FJS), Vol. 3 No. 4, December, 2019, 153-162.

Müller, U., Heuvel, B., Stamhuis, E., & Videler, J. (1997). Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon Labrosus Risso), Journal of Experimental Biology., vol. 2906, pp. 2893–2906.

NMRI (2020). National Maritime Research Institute. http://www.nmri.go.jp/oldpages /eng/khirata/ fish/. Accessed 04 July, 2020.

Salisu, A., Bugaje, A. and Shallah, A.B. (2020). Line following Robot with Hugh Radiation Material Detection Capability. FUDMA Journal of Sciences (FJS), Vol. 4 No. 4, December, 2020, 274-280. DOI: https://doi.org/10.33003/fjs-2020-0404-482.

Salumäe, T. (2014). Flow-Sensitive Robotic Fish: From Concept to Experiments. PhD Dissertation Submitted to Faculty of Information Technology, Centre for Biorobotics, Tallinn University of Technology,Tallinn, Estonia

Salumäe, T., & Kruusmaa, M. (2011). A Flexible Fin with Bio-Inspired Stiffness Profile and Geometry. Journal of Bionic Engineering, vol. 8, no. 4, pp. 418–428.

Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24, 237–252.

Shugen, M.A., & Mitsuru, W. (2002). Time-optimal control of kinematically redundant manipulators with limit heat characteristics of actuators. Advanced Robotics, Vol. 16. No. 8. pp. 735-749 (2002).

Srinivasan, M. V. (1992). Distance Perception in Insects. Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, Australia. pp 1-10. Cambridge University Press.

Streitlien, K., Triantafyllou, G. S., & Triantafyllou, M. S. (1996) Efficient foil propulsion through vortex control. American Institute of Aeronautics and Astronautics Journal, 34, 2315–2319.

Than, K. (2012). James Cameron Completes Record-Breaking Mariana Trench Dive. http://www nationalgeograpghic.com. Accessed:18-May-2022

Wang, T., Wen L., Liang J., & Wu, G. (2010). Fuzzy vorticity control of a biomimetic robotic fish using a flapping lunate tail. Journal of Bionic Engineering, 7, 56–65.

Watson, D. G. M. (2002). Practical ship design, vol. 1. Gulf Professional Publishing.

Yangwei, W., Jinbo, T., & Dongbiao, Z. (2015). Design and Experiment on a Biomimetic Robotic Fish Inspired by Freshwater Stingray. Journal of Bionic Engineering, 12, 204–216.

Published

2023-03-12

How to Cite

Ilouno, J., Awoji, M., Akeredolu, B. J., Kwaha, B. J., & Chagok, N. M. D. (2023). MEASUREMENTS OF SINGLE-MODE FIBER OPTICS ATTENUATION/LOSS USING BIDIRECTIONAL TEST TECHNIQUE. FUDMA JOURNAL OF SCIENCES, 2(1), 1 - 4. Retrieved from https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1249