• Yahaya Ibrahim Umaru Musa Yar'adua University
  • Saratu Abddulfatah
Keywords: active soft matter, colloids, diffusiophoresis, non-equilibrium dynamics, stokes flow


We study the pair interaction of chemically isotropic active colloidal particles in an externally imposed chemical gradient. Colloid particles migrate in response to a gradient of chemical solutes (i.e., via the diffusiophoresis mechanism). The particles motion induces fluid flow and distort locally the background chemical concentration field. Using the methods of images, we calculate the phoretic inter-particle interaction between two symmetric active colloids in the presence of an externally applied gradient. We highlight an interesting colloidal dipole that would arise from tuning the surface and chemical activity of the colloids. The colloidal phoretic dipoles share similar properties to the electrostatic dipoles. The inter-particle interaction we obtained is an important component for a large-scale simulation of the active colloid suspension. It may also help towards better understanding of the active systems’ emergent phenomena


Andelman, D. (2004). Introduction to Electrostatics in Soft and Biological Matter.

Anderson, J. L. (1989). Colloid transport by interfacial forces. Annual Reviews of Fluid Mechanics, 21, 61–99.

Anderson, J., Lowell, M., & Prieve, D. (1982). Motion of a particle generated by chemical gradients Part 1. Non-electrolytes. Journal of Fluid Mechanics, 117, 107–121.

Berke, A. P., Turner, L., Berg, H. C., & Lauga, E. (2008). Hydrodynamic attraction of swimming microorganisms by surfaces. Physical Review Letters, 101(3), 038102.

Bialké, J., Speck, T., & Löwen, H. (2015). Active colloidal suspensions: Clustering and phase behavior. Journal of Non-Crystalline Solids, 407, 367–375.

Blake, J. (1971). A spherical envelope approach to ciliary propulsion. Journal of Fluid Mechanics, 46(01), 199–208.

Buttinoni, I., Bialké, J., Kümmel, F., Löwen, H., Bechinger, C., & Speck, T. (2013). Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Physical Review Letters, 110(23), 238301.

Cates, M. E., & Tailleur, J. (2015). Motility-Induced Phase Separation. Annual Review of Condensed Matter Physics, 6(1), 219–244.

Ebbens, S., Gregory, D. A., Dunderdale, G., Howse, J. R., Ibrahim, Y., Liverpool, T. B., & Golestanian, R. (2014). Electrokinetic effects in catalytic platinum-insulator Janus swimmers. EPL (Europhysics Letters), 106(5), 58003.

Ebbens, S. J., & Howse, J. R. (2010). In pursuit of propulsion at the nanoscale. Soft Matter, 6(4), 726–738.

Eze, I. I., & Joseph, E. (2018). Phase behavior of hard-sphere particle in a Colloidal binary mixture. FUDMA JOURNAL OF SCIENCES-ISSN: 2616-1370, 2(1), 43–47.

Golestanian, R., Liverpool, T., & Ajdari, A. (2007). Designing phoretic micro-and nano-swimmers. New Journal of Physics, 9(5), 126.

Happel, J., & Brenner, H. (1973). Low Reynolds number hydrodynamics (Second). Noordhoff international publishing.

Howse, J. R., Jones, R. A., Ryan, A. J., Gough, T., Vafabakhsh, R., & Golestanian, R. (2007). Self-motile colloidal particles: From directed propulsion to random walk. Physical Review Letters, 99(4), 048102.

Ibrahim, Y., & Liverpool, T. B. (2015). The dynamics of a self-phoretic Janus swimmer near a wall. EPL (Europhysics Letters), 111(4), 48008.

Ibrahim, Y., & Liverpool, T. B. (2016). How walls affect the dynamics of self-phoretic microswimmers. The European Physical Journal Special Topics, 225(8), 1843–1874.

Jewell, E. L., Wang, W., & Mallouk, T. E. (2016). Catalytically driven assembly of trisegmented metallic nanorods and polystyrene tracer particles. Soft Matter, 12(9), 2501–2504.

Kim, S., & KARILLA, S. (1991). Microhydrodynamics. Butterworth-Heinemann Publish.

Kreuter, C., Siems, U., Nielaba, P., Leiderer, P., & Erbe, A. (2013). Transport phenomena and dynamics of externally and self-propelled colloids in confined geometry. The European Physical Journal Special Topics, 222(11), 2923–2939.

Liebchen, B., & Löwen, H. (2019). Which interactions dominate in active colloids? The Journal of Chemical Physics, 150(6), 061102 %@ 0021-9606.

Liebchen, B., & Mukhopadhyay, A. K. (2021). Interactions in active colloids. Journal of Physics: Condensed Matter, 34(8), 083002.

Lighthill, M. (1952). On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Communications on Pure and Applied Mathematics, 5(2), 109–118.

Moran, J. L., & Posner, J. D. (2017). Phoretic Self-Propulsion. Annual Review of Fluid Mechanics, 49, 511–540.

Navarro, R. M., & Fielding, S. M. (2015). Clustering and phase behaviour of attractive active particles with hydrodynamics. Soft Matter, 11(38), 7525–7546.

Negro, G., Caporusso, C. B., Digregorio, P., Gonnella, G., Lamura, A., & Suma, A. (2022). Inertial and hydrodynamic effects on the liquid-hexatic transition of active colloids (arXiv:2201.10019). arXiv.

Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J., & Chaikin, P. M. (2013). Living crystals of light-activated colloidal surfers. Science, 339(6122), 936–940.

Paxton, W. F., Sen, A., & Mallouk, T. E. (2005). Motility of catalytic nanoparticles through self-generated forces. Chemistry–A European Journal, 11(22), 6462–6470.

Prieve, D., Anderson, J., Ebel, J., & Lowell, M. (1984). Motion of a particle generated by chemical gradients. Part 2. Electrolytes. Journal of Fluid Mechanics, 148, 247–269.

Soto, R., & Golestanian, R. (2014). Self-assembly of catalytically active colloidal molecules: Tailoring activity through surface chemistry. Physical Review Letters, 112, 068301.

Spagnolie, S. E., & Lauga, E. (2012). Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations. Journal of Fluid Mechanics, 700, 105–147.

Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C., & Bocquet, L. (2012). Dynamic clustering in active colloidal suspensions with chemical signaling. Physical Review Letters, 108(26), 268303.

Uspal, W., Popescu, M. N., Dietrich, S., & Tasinkevych, M. (2015). Self-propulsion of a catalytically active particle near a planar wall: From reflection to sliding and hovering. Soft Matter, 11(3), 434–438.

Wagner, M., Roca-Bonet, S., & Ripoll, M. (2021). Collective behavior of thermophoretic dimeric active colloids in three-dimensional bulk. The European Physical Journal E, 44(3), 1–11.

How to Cite