EVALUATION OF 67Ga CROSS SECTIONS USING EXIFON CODE FOR MEDICAL APPLICATIONS

Authors

  • Ahmed Rufai Usman
  • A. A. Ahmad

DOI:

https://doi.org/10.33003/fjs-2022-0603-987

Keywords:

Cross sections, Excitation function, 67Ga, Nuclear reaction, Nuclear reaction model

Abstract

Radioisotopes play very important roles in nuclear medicine for imaging and therapeutic applications. In the present studies, model calculation of excitation function for production of 67Ga radioisotope was performed using the EXIFON code, a nuclear reaction cross sections theoretical model code, for the reaction 65Cu(α, 2n)67Ga. The work was performed in the incident alpha energy range of 0 - 40 MeV. Similarly, the Q-value software (interface) was used for the calculation of reaction threshold and Q-value energies of the reaction of interest and were respectively found to be 14.97 MeV and -14.10 MeV. The calculated excitation function has a peak value of 1025 mb around 25 MeV incident energy. The results from the EXIFON code were compared with the experimentally measured cross sections data retrieved from IAEA database, the EXFOR database, as well as the theoretical data from Talys code via its library, the TENDL-2019. Our results partially agree with the theoretical data from Talys code (via the TENDL-2019 library) within the investigated energy region. The results however overestimated the measured (experimental) data and only agree in shape of the excitation function. The present work does not consider the effect of shell structure during the execution of the EXIFON model code. This work could be of importance to the developers and users of nuclear reaction model codes for new developments and enhancements of the existing codes, as well as to serve as a rough guide for experimentalists during production of radioisotopes for nuclear medicine applications

References

Agostinello, J., Battistuzzo, C. R., Skeers, P., Bernard, S. & Batchelor, P. E. 2017. Early Spinal Surgery Following Thoracolumbar Spinal Cord Injury: Process of Care From Trauma to Theater. Spine, 42: E617-E623.

Aligholi, H., Hassanzadeh, G., Azari, H., Rezayat, S. M., Mehr, S. E., Akbari, M., Attari, F., Khaksarian, M. & Gorji, A. 2014. A new and safe method for stereotactically harvesting neural stem/progenitor cells from the adult rat subventricular zone. Journal of neuroscience methods, 225: 81-89.

Allison, D. J., Thomas, A., Beaudry, K. & Ditor, D. S. 2016. Targeting inflammation as a treatment modality for neuropathic pain in spinal cord injury: a randomized clinical trial. Journal of neuroinflammation, 13: 152.

Anderson, D. J. 2001. Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron, 30: 19-35.

Azari, H., Rahman, M., Sharififar, S. & Reynolds, B. A. 2010. Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. JoVE (Journal of Visualized Experiments), 20(45): 2393.

Baglio, S. R., Pegtel, D. M. & Baldini, N. 2012. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Frontiers in physiology, 3: 359.

Benito-Martin, A., Di Giannatale, A., Ceder, S. & Peinado, H. 2015. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Frontiers in immunology, 6: 66.

Camussi, G., Deregibus, M. C. & Cantaluppi, V. 2013. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Organogenesis, 7(2): 105–115 Portland Press Limited.

De Rivero Vaccari, J. P., Lotocki, G., Marcillo, A. E., Dietrich, W. D. & Keane, R. W. 2008. A molecular platform in neurons regulates inflammation after spinal cord injury. Journal of Neuroscience, 28: 3404-3414.

Farahabadi, A., Akbari, M., Pishva, A. A., Zendedel, A., Arabkheradmand, A., Beyer, C., Dashti, N. & Hassanzadeh, G. 2016. Effect of Progesterone Therapy on TNF-α and iNOS Gene Expression in Spinal Cord Injury Model. Acta Medica Iranica, 54: 345-351.

Franchi, L., Muñoz-Planillo, R. & Núñez, G. 2012. Sensing and reacting to microbes through the inflammasomes. Nature immunology, 13: 325.

Haney, M. J., Klyachko, N. L., Zhao, Y., Gupta, R., Plotnikova, E. G., He, Z., Patel, T., Piroyan, A., Sokolsky, M. & Kabanov, A. V. 2015. Exosomes as drug delivery vehicles for Parkinson's disease therapy. Journal of Controlled Release, 207: 18-30.

Ijaz, S., Mohammed, I., Gholaminejhad, M., Mokhtari, T., Akbari, M. & Hassanzadeh, G. 2019. Modulating Pro-inflammatory Cytokines, Tissue Damage Magnitude, and Motor Deficit in Spinal Cord Injury with Subventricular Zone-Derived Extracellular Vesicles. Journal of Molecular Neuroscience, 70(3):458-466.

Katsuda, T., Kosaka, N., Takeshita, F. & Ochiya, T. 2013. The therapeutic potential of mesenchymal stem cellâ€derived extracellular vesicles. Proteomics, 13: 1637-1653.

Liang, F., Li, C., Gao, C., Li, Z., Yang, J., Liu, X. & Wang, Y. 2015. Effects of hyperbaric oxygen therapy on NACHT domain-leucine-rich-repeat-and pyrin domain-containing protein 3 inflammasome expression in rats following spinal cord injury. Molecular medicine reports, 11: 4650-4656.

Liu, W., Wang, Y., Gong, F., Rong, Y., Luo, Y., Tang, P., Zhou, Z., Zhou, Z., Xu, T. & Jiang, T. 2019. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. Journal of neurotrauma, 36:469-484.

Logozzi, M., Mizzoni, D., Bocca, B., Di Raimo, R., Petrucci, F., Caimi, S., Alimonti, A., Falchi, M., Cappello, F. & Campanella, C. 2019. Human primary macrophages scavenge AuNPs and eliminate it through exosomes. A natural shuttling for nanomaterials. European Journal of Pharmaceutics and Biopharmaceutics, 137: 23-36.

Lois, C. & Alvarez-Buylla, A. 1994. Long-distance neuronal migration in the adult mammalian brain. Science, 264: 1145-1149.

Lu, Y., Zhou, Y., Zhang, R., Wen, L., Wu, K., Li, Y., Yao, Y., Duan, R. & Jia, Y. 2019. Bone Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Recovery Following Spinal Cord Injury via Improvement of the Integrity of the Blood-Spinal Cord Barrier. Frontiers in neuroscience, 12(13):209.

Marote, A., Teixeira, F. G., Mendes-Pinheiro, B. & Salgado, A. J. 2016. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Frontiers in pharmacology, 7: 231.

Mause, S. F. & Weber, C. 2010. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circulation research, 107: 1047-1057.

Mcculloh, C. J., Olson, J. K., Wang, Y., Zhou, Y., Tengberg, N. H., Deshpande, S. & Besner, G. E. 2018. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. Journal of pediatric surgery, 53: 1215-1220.

Menn, B., Garcia-Verdugo, J. M., Yaschine, C., Gonzalez-Perez, O., Rowitch, D. & Alvarez-Buylla, A. 2006. Origin of oligodendrocytes in the subventricular zone of the adult brain. Journal of Neuroscience, 26: 7907-7918.

Mohamadi, Y., Moghahi, S. M. H. N., Mousavi, M., Borhani-Haghighi, M., Abolhassani, F., Kashani, I. R. & Hassanzadeh, G. 2019. Intrathecal transplantation of Wharton’s jelly mesenchymal stem cells suppresses the NLRP1 inflammasome in the rat model of spinal cord injury. Journal of chemical neuroanatomy, 97: 1-8.

Mohamadi, Y., Mousavi, M., Moogahi, S. M. H. N., Abolhassani, F., Ijaz, S. & Hassanzadeh, G. 2018. Effect of Wharton's Jelly Derived Mesenchymal Stem Cells on the Expression of NLRP3 Receptor and Neuroinflammation in Experimental Spinal Cord Injury. Journal of Clinical & Diagnostic Research, 12(10): 33-40.

Mohammed, I., Ijaz, S., Mokhtari, T., Gholaminejhad, M., Mahdavipour, M., Jameie, B., Akbari, M. & Hassanzadeh, G. 2020. Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metabolic Brain Disease, 35: 809–818.

Mohankumar, S. & Patel, T. 2015. Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. Briefings in functional genomics, 15: 249-256.

Morel, O., Toti, F., Hugel, B. & Freyssinet, J.-M. 2004. Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Current opinion in hematology, 11: 156-164.

Mousavi, M., Hedayatpour, A., Mortezaee, K., Mohamadi, Y., Abolhassani, F. & Hassanzadeh, G. 2019. Schwann cell transplantation exerts neuroprotective roles in rat model of spinal cord injury by combating inflammasome activation and improving motor recovery and remyelination. Metabolic Brain Disease, 34(4):1117-1130.

Nikmehr, B., Bazrafkan, M., Hassanzadeh, G., Shahverdi, A., Gilani, M. A. S., Kiani, S., Mokhtari, T. & Abolhassani, F. 2017. The correlation of gene expression of inflammasome indicators and impaired fertility in rat model of spinal cord injury: a time course study. Urology journal, 14: 5057-5063.

Nishida-Aoki, N. & Ochiya, T. 2015. Interactions between cancer cells and normal cells via miRNAs in extracellular vesicles. Cellular and Molecular Life Sciences, 72: 1849-1861.

Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F. & Tschopp, J. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell death and differentiation, 14: 1583.

Rani, S., Ryan, A. E., Griffin, M. D. & Ritter, T. 2015. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Molecular Therapy, 23: 812-823.

Rong, Y., Liu, W., Wang, J., Fan, J., Luo, Y., Li, L., Kong, F., Chen, J., Tang, P. & Cai, W. 2019. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell death & disease, 10: 340.

Schorey, J. S. & Bhatnagar, S. 2008. Exosome function: from tumor immunology to pathogen biology. Traffic, 9: 871-881.

Schroder, K. & Tschopp, J. 2010. The inflammasomes. cell, 140: 821-832.

Sloka, J. & Stefanelli, M. 2005. The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Multiple Sclerosis Journal, 11: 425-432.

Thuret, S., Moon, L. D. & Gage, F. H. 2006. Therapeutic interventions after spinal cord injury. Nature Reviews Neuroscience, 7: 628-643.

Vogel, A., Upadhya, R. & Shetty, A. K. 2018. Neural stem cell derived extracellular vesicles: attributes and prospects for treating neurodegenerative disorders. EBioMedicine, 38:273-282

Xia, C., Cai, Y., Lin, Y., Guan, R., Xiao, G. & Yang, J. 2016. MiRâ€133bâ€5p regulates the expression of the heat shock protein 70 during rat neuronal cell apoptosis induced by the gp120 V3 loop peptide. Journal of medical virology, 88: 437-447.

Xin, H., Katakowski, M., Wang, F., Qian, J.-Y., Liu, X. S., Ali, M. M., Buller, B., Zhang, Z. G. & Chopp, M. 2017. MicroRNA-17–92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke, 48: 747-753.

Yang, Y., Ye, Y., Su, X., He, J., Bai, W. & He, X. 2017. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Frontiers in cellular neuroscience, 11: 55.

Zendedel, A., Johann, S., Mehrabi, S., Joghataei, M.-T., Hassanzadeh, G., Kipp, M. & Beyer, C. 2016. Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. Molecular neurobiology, 53:3063-3075.

Zhang, Y., Kim, M. S., Jia, B., Yan, J., Zuniga-Hertz, J. P., Han, C. & Cai, D. 2017. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 548: 52.

Published

2022-07-01

How to Cite

Usman, A. R., & Ahmad, A. A. (2022). EVALUATION OF 67Ga CROSS SECTIONS USING EXIFON CODE FOR MEDICAL APPLICATIONS. FUDMA JOURNAL OF SCIENCES, 6(3), 113 - 118. https://doi.org/10.33003/fjs-2022-0603-987