ANALYSIS OF RAINFALL AND TEMPERATURE CHANGES IN GOMBE STATE, NIGERIA
Keywords:
Eco-Climatic, Trend, Prediction, Mann-Kendall Test, Sen’s Slope EstimatorAbstract
This study analyses the rainfall and temperature trends of three (3) Agro-Ecological zones of Gombe State. The data for this study were sourced from the Nigerian Meteorological Agency (NiMet), Gombe State Agricultural Development Program (GSADP), and Upper Benue River Basin Development Authority (UBRBDA). The data were subjected to Linear Time Series Analysis, Mann-Kendall Z- Statistics, Sen’s Slope Estimator and Linear Growth Model. The results revealed an increasing pattern of temperature in all the zone. The mean temperature for the study period revealed an increasing rate of 0.0352oC, 0.0031oC and 0.0281oC in the Southern Guinea Savannah (SGS), Northern Guinea Savannah (NGS) and Sudan Savanna (SS) respectively. The annual rainfall revealed a decreasing trend at the rate -0.957mm, -2.74mm and -0.87mm per-1in SGS, NGS and SS respectively while Gombe station in NGS revealed an increasing trend at the rate of 3.05mm per-1. The projected trends revealed that there is going to be decreasing of temperature for Billiri station in SGS and an increasing trend of rainfall for Gombe station in NGS for the coming decades. The study concludes that there is a significant increase of temperature in all the zones and there is no statistical trend of rainfall in SS. The current trend will affect soil moisture, crop water requirement and subsequently lead to ecological change. The study recommends that inhabitants of the study areas should plan their cropping season based on climatic information of their area.
References
Aldibaja, Fadi Kamal Badia, Laura Mas-Marzá, Elena Sánchez, Rafael S. Barea, Eva M. Mora-Sero, I. (2015). Effect of different lead precursors on perovskite solar cell performance and stability. J. Mater. Chem. A, 3(17), 9194–9200. https://doi.org/10.1039/C4TA06198E
Andrei Buin, Patrick Pietsch, Oleksandr Voznyy, R., & Comin, Alexander H Ip, Edward H. Sargent, and B. X. (2014). Materials Processing Routes to Trap-free Halide Perovskites. Nano Letters, 1–24. https://doi.org/10.1021/nl502612m
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Research Letter, 1–5. https://doi.org/10.1038/nature12340
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., … Yang, Y. (2013). Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 136(2), 622–625.
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H., Wang, H., … Yang, Y. (2014). Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 136(2)(Scheme 1), 3–6. https://doi.org/10.1021/ja411509g
Chen, Y., Yerramilli, A., Shen, Y., Zhao, Z., & Alford, T. (2018). Effect of excessive Pb content in the precursor solutions on the properties of the lead acetate derived CH3NH3PbI3 perovskite solar cells. Solar Energy Materials and Solar Cells, 174(June 2017), 478–484. https://doi.org/10.1016/j.solmat.2017.09.039
Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., & Snaith, H. J. (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications, 4file:///C, 1–6. https://doi.org/10.1038/ncomms3761
Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A. K., & Liu, B. (2012). Mesoscopic CH3NH3PbI3 /TiO2 Heterojunction Solar Cells, 8–11. https://doi.org/10.1021/ja307789s
Feldmann, S., Macpherson, S., Senanayak, S. P., Abdi-jalebi, M., Rivett, J. P. H., Nan, G., … Deschler, F. (2020). Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence. Nature Photonics, 14, 123–128.
Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., … Seok, S. Il. (2013). Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6), 1–6. https://doi.org/10.1038/nphoton.2013.80
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. (2011). 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale, 3(10), 4088–4093. https://doi.org/10.1039/c1nr10867k
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., … Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. SCIENTIFIC REPORTS, 2:591, 1–7. https://doi.org/10.1038/srep00591
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Reports, 338(November), 643–648. https://doi.org/10.1126/science.1228604
Li, C., Guo, Q., Qiao, W., Chen, Q., Ma, S., Pan, X., … Tan, Z. (2016). Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Organic Electronics: Physics, Materials, Applications, 33, 194–200. https://doi.org/10.1016/j.orgel.2016.03.017
Liu, M.-H., Zhou, Z.-J., Zhang, P.-P., Tian, Q.-W., Zhou, W.-H., Kou, D.-X., & Wu, S.-X. (2016). p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells. Optics Express, 24(22), 128–132. https://doi.org/org/10.1364/OE.24.0A1349
Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395–398. https://doi.org/10.1038/nature12509
Moore, D. T., Sai, H., Tan, K. W., Estroff, L. A., & Wiesner, U. (2014). Impact of the organic halide salt on final perovskite composition for photovoltaic applications composition for photovoltaic applications. APL Materials, 2(May). https://doi.org/10.1063/1.4886275
Qing, J., Chandran, H. T., Xue, H. T., Guan, Z. Q., Liu, T. L., Tsang, S. W., … Lee, C. S. (2015). Simple fabrication of perovskite solar cells using lead acetate as lead source at low temperature. Organic Electronics: Physics, Materials, Applications, 27, 12–17. https://doi.org/10.1016/j.orgel.2015.08.021
Sanni, D. M., Chen, Y., Yerramilli, A. S., Ntsoenzok, E., Asare, J., Adeniji, S. A., … Alford, T. L. (2019). An approach to optimize pre ‑ annealing aging and anneal conditions to improve photovoltaic performance of perovskite solar cells. Materials for Renewable and Sustainable Energy, 3, 1–10. https://doi.org/10.1007/s40243-018-0139-3
Shao, Y., Xiao, Z., Bi, C., Yuan, Y., & Huang, J. (2014). Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 5, 1–7. https://doi.org/10.1038/ncomms6784
Sima, M., Vasile, E., & Sima, M. (2017). Lead acetate film as precursor for two-step deposition of CH 3 NH 3 PbI 3. Materials Research Bulletin, 89, 89–96. https://doi.org/10.1016/j.materresbull.2017.01.031
Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., … Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Reports, 342(October), 341–345. https://doi.org/10.1126/science.1243982
Tan, H., Jain, A., Voznyy, O., Lan, X., De Arquer, F. P. G., Fan, J. Z., … Sargent, E. H. (2017). Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355(6326), 722–726. https://doi.org/10.1126/science.aai9081
Xing, G., Mathews, N., Lim, S. S., Lam, Y. M., Mhaisalkar, S., & Sum, T. C. (2013). Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342(October), 344–348. https://doi.org/10.1126/science.1243167
Ye-Jin, J., Lee, S., Kang, R., Kim, J.-E., Yeo, J.-S., Lee, S.-H., … Kim, D.-Y. (2014). Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 4, 1–7. https://doi.org/10.1038/srep06953
Yerramilli, A. S., Chen, Y., Sanni, D., Asare, J., Theodore, N. D., & Alford, T. L. (2018). Impact of excess lead on the stability and photo-induced degradation of lead halide perovskite solar cells. Organic Electronics: Physics, Materials, Applications, 59. https://doi.org/10.1016/j.orgel.2018.04.052
Yoshida, T., Fujikake, S., Kato, S., Tanda, M., Tabuchi, K., Takano, A., … Sakai, H. (1997). Development of process technologies for plastic-film substrate solar cells. Solar Energy Materials and Solar Cells, 48, 383–391. https://doi.org/org/10.1016/S0927-0248(97)00167-0
You, J., Hong, Z., Yang, Y. (Michael), Chen, Q., Cai, M., Song, T.-B., … Yang, Y. (2014). Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility, (Xx). https://doi.org/10.1021/nn406020d
You, J., Hong, Z., Yang, Y. M., Chen, Q., Cai, M., Song, T., & Chen, C. (2014). Perovskite Solar Cells with High Effi ciency and Flexibility, (2), 1674–1680. https://doi.org/10.1021/nn406020d
Zhang, W., Saliba, M., Moore, D. T., Pathak, S. K., Hörantner, M. T., Stergiopoulos, T., … Snaith, H. J. (2015). Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Communications, 6, 1–10. https://doi.org/10.1038/ncomms7142
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., … Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Reseach Reports, 345(6196), 542–546. https://doi.org/10.1126/science.1254050
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences