TOWARD ADOPTION OF DRIP IRRIGATION AND SOIL-MOISTURE SENSORS BY SMALL-SCALE FARMERS

  • Lawal Ahmad Department of Agricultural and Environmental Engineering, Bayero University Kano, Nigeria
  • N. J. Shanono Department of Agricultural and Environmental Engineering, Bayero University Kano, Nigeria
  • N. M. Nasidi Department of Agricultural and Environmental Engineering, Bayero University Kano, Nigeria
Keywords: drip irrigation system, semi-arid Nigeria, small-scale farmers, soil moisture sensors

Abstract

The semi-arid region of the world is occasionally affected by erratic rainfall and drought which threatens agricultural production and food security. This paper presents the outcome obtained from a review to provide proactive measures that will combat the problems of water scarcity through the adoption of sensor-based drip irrigation by small-scale farmers. The small-scale farmers constituted the larger proportion of the farming population in the region. The paper is centred on the general overview of irrigation practices, advances in irrigation systems, modelling irrigation and cropping Systems, coupling soil sensors with drip irrigation and their adoption. Factors that hinder the acceptance and adoption of sensor-based drip irrigation systems were reviewed and synthesized which include initial capital investment, farmers’ awareness, risk perception and uncertainties, technical know-how, farm size and capital recovery. A simple framework for adopting a sensor-based drip irrigation system was developed. The building blocks of the framework include the dissemination of sensor-based irrigation to farmers, the creation of awareness among farming communities, and the provision of subsidies and credit. Others include the provision of policies and environmental standards and review of the price of water charges. This study will be useful to farmers, agricultural extension agents and policymakers in making decisions about the water resources planning and farming activities in the region.

References

Abdulai, A., John-Eudes, V. O., & Bakang, A. (2011). Adoption of safer irrigation technologies and cropping patterns: Evidence from Southern Ghana. Ecological Economics, 70(7), 1415–1423. https://doi.org/https://doi.org/10.1016/j.ecolecon.2011.03.004Get rights and content
Acheampong, P. P., Amengor, N. E., Nimo-Wiredu, A., Adogoba, D., Frimpong, B. N., Haleegoah, J., & Adu-Appiah, A. (2018). Does Awareness influence Adoption of agricultural technologies ? The case of Improved Sweet potato varieties in Ghana. Ghana Association of Agricultural Economists (GAAE) 2nd GAAE Conference 9-11th August, 2018 Ghana’s Agriculture, Food Security and Job Creation Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, August.
Akbari, M., Gheysari, M., Mostafazadeh-Fard, B., & Shayannejad, M. (2018). Surface irrigation simulation-optimization model based on meta-heuristic algorithms. Agricultural Water Management, 201(January), 46–57. https://doi.org/10.1016/j.agwat.2018.01.015
Al-Ghobari, H. M., Mohammad, F. S., Al-Marazky, M. S., & Dewidar, A. Z. (2017). Automated irrigation systems for wheat and tomato crops in arid regions. Water SA, 43(2), 354–364. https://doi.org/http://dx.doi.org/10.4314/wsa.v43i1.12
Ali, A., Xia, C., Jia, C., & Faisal, M. (2020). Investment profitability and economic efficiency of the drip irrigation system: Evidence from Egypt. Irrigation and Drainage, 69(5), 1033–1050. https://doi.org/https://doi.org/10.1002/ird.2511
Antle, J. M., Basso, B., Conant, R. T., Godfray, H. C. J., Jones, J. W., Herrero, M., Howitt, R. E., Keating, B. A., Munoz-Carpena, R., Rosenzweig, C., Tittonell, P., & Wheeler, T. R. (2017). Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agricultural Systems, 155, 255–268. https://doi.org/10.1016/j.agsy.2016.10.002
Ara, I., Turner, L., Harrison, M. T., Monjardino, M., deVoil, P., & Rodriguez, D. (2021). Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review. Agricultural Water Management, 257(June), 107161. https://doi.org/10.1016/j.agwat.2021.107161
Badewa, E., Unc, A., Cheema, M., Kavanagh, V., & Lakshman Galagedara. (2018). Soil Moisture Mapping Using Multi-Frequency and Multi-Coil Electromagnetic Induction Sensors on Managed Podzols. Agronomy, 8(10). https://doi.org/https://doi.org/10.3390/agronomy8100224
Bagheri, A., & Ghorbani, A. (2011). Adoption and non-adoption of sprinkler irrigation technology in Ardabil Province of Iran. African Journal of Agricultural Research, 6(5), 1085–1089. https://doi.org/t http://www.academicjournals.org/AJAR
Barkunan, S. R., Bhanumathi, V., & Sethuram, J. (2019). Smart sensor for automatic drip irrigation system for paddy cultivation. Journal of Computer and Electrical Engineering, 73(January), 180–193. https://doi.org/https://doi.org/10.1016/j.compeleceng.2018.11.013
Chandran, K. M., & Surendran, U. (2016). Study on factors influencing the adoption of drip irrigation by farmers in humid tropical Kerala, India. International Journal of Plant Production, 10(3). https://doi.org/https://ijpp.gau.ac.ir/article_2902_e472549280e18453e066c285d643ecb1.pdf
Chaware, D., Panse, M., Raut, A., & Koparkar, A. (2015). Sensor-based Automated Irrigation System. International Journal of Engineering Research & Technology (IJERT), 4(05), 33–37. https://doi.org/https://www.ijert.org/research/sensor-based-automated-irrigation-system-IJERTV4IS050076.pdf
Chen, X., Qi, Z., Gui, D., Gu, Z., Ma, L., Zeng, F., Li, L., & Sima, M. W. (2019). A model-based real-time decision support system for irrigation scheduling to improve water productivity. Agronomy, 9(11). https://doi.org/10.3390/agronomy9110686
Dace, H. (2020). Technology to Feed the World. In Tony Blair Institute for Global change. https://institute.global/sites/default/files/articles/Technology-to-Feed-the-World.pdf
Dowgert, M. (2010). The Impact of Irrigated Agriculture on a Stable Food Supply. Proceedings of the 22nd Annual Central Plains Irrigation Conference, 1–11. https://doi.org/https://www.ksre.k-state.edu/irrigate/oow/p10/Dowgert10.pdf
Dubey, A., & Dubey, K. (2018). Sensor Based Drip Irrigation. International Journal of Scientific and Engineering Research, 9(2), 11–14. https://www.ijser.org/
Dukes, M. D., Simonne, E. H., Davis, W. E., Studstill, D. W., & Hochmuth, R. (2003). effect of sensor-based high frequency irrigation on bell pepper yield and water use. Proceedings 2nd International Conference on Irrigation and Drainage, Phoenix, AZ, 665–674. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4D5F70238DF8438F52BE9A5024F178FD?doi=10.1.1.455.491&rep=rep1&type=pdf
Enete, A. A., & Amusa, T. A. (2010). Challenges of Agricultural Adaptation to Climate Change in Nigeria: A synthesis from the literature. Open Edition Journal, 4(December), 11. http://www.mendeley.com/research/challenges-agricultural-adaptation-climate-change-nigeria-synthesis-literature/
FAO. (2005). Irrigation in Africa in figures AQUASTAT Survey – 2005. In Irrigation in Africa in figures. https://www.fao.org/3/a0232e/A0232E.pdf
FAO. (2020). World Food and Agriculture - Statistical Yearbook 2020. Food and Agricultural Organisation. https://doi.org/https://doi.org/10.4060/cb1329en
Food and Agriculture Organisation. (2016). Agriculture And Food Insecurity Risk Management in Africa Concepts, lessons learned and review guidelines.
Ghanisanij, H. D., Oweis, T., & Qureshi, A. S. (2006). Agricultural water use and management in arid and semi-arid areas : Current situation and measures for improvement. Annals of Arid Zone, 45(2r), 1–24. https://doi.org/https://hdl.handle.net/10568/40921
IFAD. (2013). Smallholders, food security, and the environment. https://www.ifad.org/documents/38714170/39135645/smallholders_report.pdf/133e8903-0204-4e7d-a780-bca847933f2e
International Commission on Irrigation and Drainage. (2022). Application of Irrigation water > Pressurized Irrigation. https://doi.org/https://www.icid.org/press_irri.html
Ismai’il, H., Abubakar, S. Z., Oyebode, M. ., Halilu, A. G., & Shanono, N. J. (2014). Effect of Irrigation Regimes on Growth and Yield of Tomato under High Water-table Conditions. Nigerian Journal of Science and Environmental Research, 12, 43–57.
Jame, Y. W., & Cutforth, H. W. (1996). Crop growth models for decision support systems. Plant Science, 76, 9–19. https://doi.org/197.210.70.172 on 11/16/21
Kaarthikeyan, G. M., & Suresh, A. (2019). A Study on Understanding the Adoption of Water Saving Technology : A Case Study of Drip Irrigation. International Journal of Recent Technology and Engineering, 7(6), 1123–1130. https://doi.org/https://www.ijrte.org/wp-content/uploads/papers/v7i6/F2534037619.pdf
Kephe, P. N., Ayisi, K. K., & Petja, B. M. (2021). Challenges and opportunities in crop simulation modelling under seasonal and projected climate change scenarios for crop production in South Africa. Agriculture and Food Security, 10(1), 1–24. https://doi.org/10.1186/s40066-020-00283-5
Khan, M. I., & Walker, D. (2015). Application of Crop Growth Simulation Models in Agriculture with special reference to Water Management Planning. International Journal Of Core Engineering & Management (IJCEM, 2(5), 9510. https://pdfs.semanticscholar.org/2be8/1e0c2be83f681147a52ab1b412106c440499.pdf
Kinyangi, A. A. (2014). Factors Influencing the Adoption of Agricultural Technology Among Smallholder Farmers in Kakamega North Sub-County, Kenya. In MSc Thesis. https://doi.org/http://erepository.uonbi.ac.ke/handle/11295/76086
Kloess, S., Schütze, N., Walser, S., Kloss, S., & Walser, S. (2012). Evaluation of Different Crop Models for Estimating the Potentials To Increase the Water Use Efficiency Under Climate Variability. Water Resources Management, 26(4), 1–12. https://doi.org/10.1007/s11269-011-9906-y
Kloss, S., Schütze, N., & Schmidhalter, U. (2014). Evaluation of Very High Soil-Water Tension Threshold Values in Sensor-Based Deficit Irrigation Systems. Journal of Irrigation and Drainage Engineering, 140(9). https://doi.org/10.1061/(asce)ir.1943-4774.0000722
Knoema. (2021). World Data Atlas ; Water Irrigation » Area Equipped For Full Control IRRIGATION. Knoema. https://doi.org/https://knoema.com/atlas/topics/Water/Irrigation-Area-Equipped-for-Full-Control-Irrigation/Surface-irrigation
Ko, J., Piccinni, G., Guo, W., & Steglich, E. (2009). Parameterization of EPIC crop model for simulation of cotton growth in South Texas. Journal of Agricultural Science, 147, 169–178. https://doi.org/10.1017/S0021859608008356
Kulkarni, S. (2011). Innovative Technologies for Water Saving in Irrigated Agriculture. International Journal of Water Resources and Arid Environments, 1(3), 226–231.
Lea-Cox, J. D., Williams, J., & Mellano, M. A. (2018). Optimising a sensor-based irrigation protocol for a large-scale cut-flower operation in southern California. Acta Horticulturae, 1197, 219–225. https://doi.org/10.17660/ActaHortic.2018.1197.29
Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014a). Improving water-efficient irrigation : Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94. https://doi.org/10.1016/j.agwat.2014.07.012
Li, J., Jiao, X., Jiang, H., Song, J., & Chen, L. (2020). Optimization of irrigation scheduling for maize in an arid oasis based on simulation-optimization model. Agronomy, 10(7). https://doi.org/10.3390/agronomy10070935
Li, X., & Troy, T. J. (2018). Changes in rainfed and irrigated crop yield response to climate in the western US. Environmental Research Letters, 13(6). https://doi.org/10.1088/1748-9326/aac4b1
Liangzhi, Y., Ringler, C., Nelson, G., Wood-Sichra, U., Robertson, R., Wood, S., Guo, Z., Zhu, T., & Sun, Y. (2010). What Is the Irrigation Potential for Africa ? a Combined. Sustainable Solution for Ending Hunger and Poverty Discussion Paper 00993, June. http://ageconsearch.umn.edu/bitstream/93736/2/ifpridp00993.pdf
LiangzhiI, Y., Takeshima, H., & Xie, H. (2018). Cultivating growth in Nigerian agriculture with small-scale irrigation. International Food Policy Research Institute. https://www.ifpri.org/blog/cultivating-growth-nigerian-agriculture-small-scale-irrigation
Lieth, H., & Oki, L. (2008). Irrigation in Soilless Production (J. H. L. Michael Raviv (ed.)). Elsevier. https://doi.org/https://doi.org/10.1016/B978-044452975-6.50006-X
Mavani, D., & Prajapati, G. (2019). Sensor-based Drip Irrigation Using Solar Pump. Global Sci. J. 7(6), 388–392. https://doi.org/https://www.globalscientificjournal.com/researchpaper/ Sensor_Based_Drip_Irrigation_Using_Solar_Pump.pdf
McCarthy, A. C., Hancock, N. H., & Raine, S. R. (2013). Advanced process control of irrigation: the current state and an analysis to aid future development. Irrigation Science, 31, 183–192. https://doi.org/dx.doi.org/10.1007/s00271-011-0313-1
Medugu, N. I., Majid, M. R., & Johar, F. (2011). Drought and desertification management in arid and semi-arid zones of Northern Nigeria. Management of Environmental Quality: An International Journal, 22(5), 595–611. https://doi.org/10.1108/14777831111159725
Mgbenka, R. N., & Mbah, E. N. (2016). A Review of smallholder farming in Nigeria: need for transformation. International Journal of Agricultural Extension and Rural Development Studies, 3(2), 43–54. https://www.eajournals.org/journals/international-journal-agricultural-extension-rural-development-studies-ijaerds/vol-3-issue-2-may-2016/review-smallholder-farming-nigeria-need-transformation/#:~:text=More than 80%25 of farmers, production resources avail
Montesano, F., & Parente, A. (2015). Irrigation Management of Greenhouse Tomato and Cucumber Using Tensiometer : Effects on Yield, Quality and Water Use. Agriculture and Agricultural Science Procedia, 4, 440–444. https://doi.org/10.1016/j.aaspro.2015.03.050
Munoth, P., Goyal, R., & Tiwari, K. (2016). Sensor-based irrigation system: A review. Int. J. Engg. Res. Tech., 4(23), 86–90. http://www.ijert.org
Muñoz-carpena, R. (2004). Field Devices For Monitoring Soil Water Content 1. IFAS Extension University of Colorido. https://doi.org/10.1201/9781420032086.ch5
Narayanamoorthy, A., Bhattarai, M., & Jothi, P. (2018). An assessment of the economic impact of drip irrigation in vegetable production in India. Agricultural Economics Research Review, 31(1), 105. https://doi.org/10.5958/0974-0279.2018.00010.1
Ncube, B., Mupangwa, W., & French, A. (2018). Precision Agriculture and Food Security in Africa. In Systems Analysis Approach for Complex Global Challenges. Springer International Publishing AG, part of Springer Nature 2018. https://doi.org/10.1007/978-3-319-71486-8
NEPAD. (2013). African Agriculture, Transformation and Outlook. https://www.tralac.org/images/docs/6460/agriculture-in-africa-transformation-and-outlook.pdf
Nigerian National Committee on Irrigation and Drainage. (2021). Country profile on Irrigation and Drainage. https://doi.org/https://icid-ciid.org/member/country_profile1/71_A
OECD. (2001). Adoption of Technologies for Sustainable Farming Systems. Wageningen Workshop Proceedings, 149. https://doi.org/https://www.oecd.org/greengrowth/sustainable-agriculture/2739771.pdf
Parvan, A. (2011). Agricultural technology adoption: Issues for consideration when scaling-Up. The Cornell Policy Review, 5–31. https://doi.org/https://blogs.cornell.edu/policyreview/2011/07/01/agricultural-technology-adoption-issues-for-consideration-when-scaling-up/
Perry, C. S., Steduto, P., & Karajeh, F. (2017). Does improved irrigation technology save water ? A review of evidence: Discussion paper on irrigation and sustainable water resources management in the Near East and North Africa (C. Perry, P. Steduto, & F. Karajeh (eds.)). Food and agriculture organization of the united nations, cairo. https://doi.org/https://www.fao.org/3/I7090EN/i7090en.pdf
Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Molero Milan, A., Rutkoski, J., Schulthess, U., Singh, B., Sonder, K., Tonnang, H., & Vadez, V. (2018). Role of modelling in international crop research: Overview and some case studies. Agronomy, 8(12). https://doi.org/10.3390/agronomy8120291
Rosegrant, M. W., Ringler, C., & Zhu, T. (2009). Water for agriculture: Maintaining food security under growing scarcity. Annual Review of Environment and Resources, 34, 205–222. https://doi.org/10.1146/annurev.environ.030308.090351
Saberi, E., Khashei Siuki, A., Pourreza-Bilondi, M., & Shahidi, A. (2020). Development of a simulation-optimization model with a multi-objective framework for automatic design of a furrow irrigation system. Irrigation and Drainage, 69(4), 603–617. https://doi.org/10.1002/ird.2460
Samberg, L. H., Gerber, J. S., Ramankutty, N., Herrero, M., & West, P. C. (2016). Subnational distribution of average farm size and smallholder contributions to global food production. Environmental Research Letters, 11.
Sanni, S. A., Oluwasemire, K. O., & Nnoli, N. O. (2012). Traditional capacity for weather prediction, variability and coping strategies in the front line states of nigeria. Agricultural Sciences, 03(04), 625–630. https://doi.org/10.4236/as.2012.34075
Sawa, B. A., Ati, O. F., Jaiyeoba, I. A., & Oladipo, E. O. (2015). Trends in Aridity of the Arid and Semi-Arid Regions of Northern Nigeria. Journal of Environment and Earth Science, 5(10), 61–69. https://core.ac.uk/download/pdf/234664246.pdf
Schütze, N., & Schmitz, G. H. (2010). OCCASION: New Planning Tool for Optimal Climate Change Adaption Strategies in Irrigation. Journal of Irrigation and Drainage Engineering, 136(12), 2010. https://doi.org/https://doi.org/10.1061/(ASCE)IR.1943-4774.0000266
Seidel, S. (2012). Optimal Simulation Based Design Dresdner Schriften zur Hydrologie.
Semenov, M. A. (2009). Impacts of climate change on wheat in England and Wales. Journal of the Royal Society Interface, 6(33), 343–350. https://doi.org/10.1098/rsif.2008.0285
Shanono, N. J., Bello, M. M., Zakari, M. D., Ibrahim, A., Usman, I. M. ., Nasidi, N. M., & Maina, M. . (2020). Stakeholders Conflict And Infrastructural Decay In Nigerian Irrigation Schemes: A Review. Nigerian Journal of Engineering Science and Technology, 6(1), 78–90. http://www.njestr.com.ng/article.php?_open&_eid=NJE-866376
Shanono, N. J., Isma’i, H., Nasidi, N. M., Yahya, M. N., Umar, S. I., Nuradeen, A. Y., Musa, A. M., Mustapha, Z., Dantala., M. Z., & 1D. (2021). Assessing the Operational Performance and Stakeholders ’ Perceptions on the Management of Irrigation Projects in Kano , Nigeria. COMU J. Agric. Fac., 9(2), 317–325. https://doi.org/10.33202/comuagri.936306
Shanono, N. J., Nasidi, N. M., & Isma’il, H. (2021). Framework for Quantitative Incorporation of Human Behaviour into Irrigation Schemes Performance Assessment. Academia Letters, Article 43(December), 1–6. https://doi.org/https://doi.org/10.20935/AL4302.
Shanono, N. J., & Ndiritu, J. (2021). Modelling and assessing the impact of illegal water abstractions by upstream farmers on reservoir performance. Turkish Journal of Geoscience, 2(2), 47–54. https://doi.org/10.48053/turkgeo.1011374
Sharma, V., Singh, P. K., Bhakar, S., & Yadav, K. K. (2019). Integration of Soil Moisture Sensor Based Automated Drip Irrigation System for Okra Crop Integration of Soil Moisture Sensor Based Automated Drip Irrigation System for Okra Crop. Indian Journal of Pure and Applied Biosciences, 7(4r), 277–282. https://doi.org/10.18782/2320-7051.7642
Singels, A., Annandale, J. G., Jager, J. M. De, Schulze, R. E., Durand, W., Rensburg, L. D. Van, Heerden, P. S. Van, Crosby, C. T., Green, G. C., & Steyn, J. M. (2013). Modelling crop growth and crop water relations in South Africa : Past achievements and lessons for the future. 1862. https://doi.org/10.1080/02571862.2010.10639970
Soundharajan, B., & Sudheer, K. P. (2009). Deficit irrigation management for rice using crop growth simulation model in an optimization framework. Paddy and Water Environment, 7(2), 135–149. https://doi.org/10.1007/s10333-009-0156-z
Thompson, R. B., & Gallardo, M. (2005). Use of Soil Moisture Sensors for Irrigation Scheduling. “Improvement of Water Use Efficiency in Protected Crops, January, 1–6. https://doi.org/https://www.researchgate.net/publication/285422793_Use_of_soil_sensors_for_irrigation_scheduling/link/566481dc08ae418a786d6a93/download
Ullah, A., Saqib, S. E., & Kächele, H. (2022). Determinants of Farmers ’ Awareness and Adoption of Extension Recommended Wheat Varieties in the Rainfed Areas of Pakistan. Sustainability, 14(3194), 1–18. https://doi.org/https://doi.org/10.3390/su14063194
Umar, D. A., Umar, H. A., & Tukur, A. I. (2017). Climate variability and water supply: a review of rural water planning techniques for semi-arid region of nigeria. Dutse Journal of Pure and Applied Sciences, 3(2). https://www.researchgate.net/publication/323737877_climate_variability_and_water_supply_a_review_of_rural_water_planning_techniques_for_semi-arid_region_of_nigeria
UNEP-WCMC. (2007). A spatial analysis approach to the global delineation of drylands areas of relevance to the CBD Programme of Work on Dry and Subhumid Lands. Dataset based on spatial analysis between WWF terrestrial ecoregion (Vol. 7, Issue 3). https://doi.org/https://www.unep-wcmc.org/system/dataset_file_fields/files/000/000/091/original/Global-Drylands-FINAL-LR.pdf?1398440625
UNESCO. (2017). World Water Assessment Programme (UNESCO WWAP): Facts and Figures. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/facts-and-figures/all-facts-wwdr3/fact-24-irrigated-land/
Viswanathan, P. K., Kumar, M. D., & Narayanamoorthy, A. (2016). Micro Irrigation Systems in India: Emergence, Status and Impacts (India Studies in Business and Economics). Springer International Publishing Switzerland 2016. https://doi.org/10.1007/978-981-10-0348-6
Wallach, D., Makowsk, D., Jones, J., & Brun, F. (2006). Working with Dynamic Crop Models Evaluation, Analysis, Parameterization, and Applications (D. M. and J. J. Daniel Wallach (ed.); first). Academic press. https://www.elsevier.com/books/working-with-dynamic-crop-models/wallach/978-0-444-52135-4
Walser, S., Schütze, N., Marcus, G., Susanne, L., & Schmidhalter, U. (2011). Evaluation of the transferability of a SVAT model--results from field and greenhouse applications. Irrigation and Drainage, 60(SUPPL. 1), 59–70. https://doi.org/10.1002/ird.669
Wang, J., Mendelsohn, R., Dinar, A., & Huang, J. (2010). How Chinese Farmers Change Crop Choice to Adapt to Climate Change. Climate Change Economics, 1(3), 167–185. https://doi.org/10.1142/S2010007810000145
Wang, Q., Klassen, W., Li, Y., Codallo, M., & Abdul-Baki, A. A. (2005). Influence of cover crops and irrigation rates on tomato yields and quality in a subtropical region. HortScience, 40(7), 2125–2131. https://doi.org/10.21273/hortsci.40.7.2125
Wei, L., Awais, M., Ru, W., Shi, W., Ajmal, M., Uddin, S., & Liu, C. (2020). Review of Sensor Network-Based Irrigation Systems Using IoT and Remote Sensing. Advances in Meteorology, 2020. https://doi.org/10.1155/2020/8396164
Wheeler, W. D., Thomas, P., van Iersel, M., & Chappell, M. (2018). Implementation of sensor-based automated irrigation in commercial floriculture production: A case study. HortTechnology, 28(6), 719–727. https://doi.org/10.21273/HORTTECH04114-18
White, R. P., & Nackoney, J. (2003). DRYLANDS , P EOPLE , AND ECOSYSTEM GOODS AND SERVICES : A Web-Based Geospatial Analysis. World Resources Institute, February, 1–58. http://www.wri.org/
Whitford, G. W., & Duval, D. B. (2020). Ecology of the Desert System; Chapter 1 - Conceptual Framework, Paradigms, and Models (second). Imprint Academic Press. http://dx.doi.org/10.1016/j.jss.2014.12.010%0Ahttp://dx.doi.org/10.1016/j.sbspro.2013.03.034%0Ahttps://www.iiste.org/Journals/index.php/JPID/article/viewFile/19288/19711%0Ahttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.678.6911&rep=rep1&type=pdf
Zaccaria, D., Carrillo-Cobo, M. T., Montazar, A., Putnam, D. H., & Bali, K. (2017). Assessing the viability of sub-surface drip irrigation for resource-efficient alfalfa production in central and Southern California. Water (Switzerland), 9(11), 1–21. https://doi.org/10.3390/w9110837
Zakari, M. D., Audu, I., Igbadun, E., Shanono, N. J., Maina, M. M., Nasidi, N. M., & Shitu, A. (2020). Yield and Water-Use of Tomato under Deficit-Irrigation and Mulch Practices at Kano River Irrigation Project. 6(1), 78–90.
Zakari, M. D., Audu, I., Igbadun, H. E., Nasidi, N. M., Shanono, N. J., Ibrahim, A., Mohammed, D., A.A. Sabo, & Usman, I. M. T. (2019). effects of deficit irrigation and mulch practices on yield and yield response factors of tomato ( lycopersicon esculentum ) at kano. bayero journal of engineering and technology, 14(2), 209–225. https://www.bayerojet.com
Zakari, M. D., Dalhat, H. N., Ohiudi, I. S., Shamsu, S., Mohammed, D., Ahmadu, S. E., Ibrahim, A., Nasidi, N. M., Shanono, N. J., & Sabo, A. A. (2021). Assessing the farmers’ awareness and practices of irrigation water conservation techniques in Kano – Nigeria. Algerian Journal of Engineering and Technology, 05, 14–18. https://jetjournal.org/index.php/ajet
Published
2022-07-06
How to Cite
AhmadL., Jafar ShanonoN., & Mustapha NasidiN. (2022). TOWARD ADOPTION OF DRIP IRRIGATION AND SOIL-MOISTURE SENSORS BY SMALL-SCALE FARMERS. FUDMA JOURNAL OF SCIENCES, 6(3), 259 - 270. https://doi.org/10.33003/fjs-2022-0603-961