SOME PROPERTIES OF FUZZY MULTIGROUPS

  • O. O. Ifetoye
  • A. I. Isah
  • Y. Tella
Keywords: fuzzy multigroup, Normal series of fuzzy multigroup, fuzzy multigroupoid, fuzzy multimonoid, centralizer of fuzzy multigroup

Abstract

The concept of fuzzy multigroup is an algebraic structure of a fuzzy multiset that generalizes both the classical group and fuzzy group.  In fact, fuzzy multigroup constitutes an application of fuzzy multiset to the elementary theory of classical group.  In this paper, some notions of fuzzy multigroup such as normal series and its properties, fuzzy multigroupoid, fuzzy multimonoid, centralizer of fuzzy multigroup etc., were presented. Some theorems on these together with their proofs were formulated. Some related results on fuzzy multigroups were established

References

Adam, F and Hassan, N (2016). Interval Valued Q-Fuzzy Multiparameterized Soft Set and its Application, Malaysian Journal of Mathematical Sciences 10 (3) 309-329.

Alkali, A. J. and Isah, A. I. (2019). α-cut and Inverse α-cut in Fuzzy Soft Set, Bayero Journal of Pure and Applied Sciences, 12 (1) 155-160.

Blizard, W. D. (1989). Multiset Theory, Notre Dame Journal of formal logic, 30, 36-66.

Ejegwa, P. A. (2018). On Fuzzy Multigroups and Fuzzy Submultigroups, Journal of Fuzzy Mathematics 26 (3) 641–654.

Ejegwa P. A. (2019). Direct product of fuzzy multigroups, J. New Theory, 28, 62–73.

Ejegwa P. A. and Ibrahim A. M. (2020).Some Properties of Multigroups, Palestine Journal of Mathematics 9 (1) 31–47.

Girish, K. P. and John, S. J. (2012). Multiset Topologies Induced by Multiset Relations, Information Science, 188, 298-313.

Hariprakash, G. (2016). A Study of Green’s Relations on Fuzzy Semigroup, International Journal of Computational and Applied Mathematics, 11 (1) 1-8.

Isah, A. I. and Tella, Y. (2015). The Concept of Multiset Category, British Journal of Mathematics and Computer Science, 9 (5) 427-437.

Isah, A. I. (2020). Multi-Fuzzy Set Relational Structures, FuDMA Journal of Sciences, 4 (1) 662 – 667

Jena, S. P., Ghosh, S. K., and Tripathi, B. K. (2011). On theory of bags and lists, Information Sciences, 132, 241- 254.

Knuth, D. E. (1981). The Art of computer programming, 2 (Semi numerical Algorithms) Second Edition, Addison – Wesley.

Miyamoto, S. (1997). Fuzzy multisets with inï¬nite collections of memberships, Proc. of the 7th International Fuzzy Systems Association World Congress (IFSA’97), June 25- 30, 1997, Prague, Chech, (1) 61-66.

Mordeson, J. M., Bhutani, K. R. and Rosenfeld, A. (2005). Fuzzy group theory, Springer Verlag Berlin Heidelberg.

Nazmul, S. k., Majumdar, P. and Samanta, S. K. (2013). On multisets and multigroups, Annals of Fuzzy Mathematics and Informatics, 6 (3) 643–656.

Rosenfeld, A. (1971). Fuzzy subgroups, Journal of Mathematical Analysis and Applications, 35, 512-517.

Shinoj, T. K., Baby, A. and Sunil, J. J. (2015). On some algebraic structures of fuzzy multisets, Annals of Fuzzy Mathematics and Informatics, 9 (1) 77–90.

Singh, D. and Isah, A. I. (2016). Mathematics of multisets: a unified approach, Afrika Matematika, Springer, 27, 1139–1146.

Singh, D., Ibrahim, A. M., Tella, Y. and Singh, J. N. (2007). An Overview of the Applications of Multisets. NOVI Sad J. Math, 37 (2) 73 – 92.

Yager R. R. (1986). On the theory of bags, International Journal of General Systems 13, 23–37.

Zadeh L. A. (1965). Fuzzy sets, Inform. Control 8, 338–353.

Published
2022-04-02
How to Cite
IfetoyeO. O., IsahA. I., & TellaY. (2022). SOME PROPERTIES OF FUZZY MULTIGROUPS. FUDMA JOURNAL OF SCIENCES, 6(1), 278 - 281. https://doi.org/10.33003/fjs-2022-0601-897