DNA VACCINES: CHALLENGES AND APPROACHES

  • G. O. Omaji
  • T. M. Anakaa
  • L. E. Ilouno
Keywords: DNA vaccine, Plasmid design, Adjuvant, Delivery systems, COVID-19, Pandemic settings

Abstract

Since the discovery of the first vaccine about 200 years ago, improvement in vaccine development approaches has occurred over the years.  Most notably, the emergence of DNA vaccines. DNA vaccines can evoke both humoral and cell mediated immunity, they are safe and have several advantages over other vaccines types. Despite this, poor immunogenicity produced by DNA vaccines in humans has called for novel strategies. This review highlight ways to improve the efficacy of DNA vaccines through plasmid modification, delivery systems, prime boost and addition of adjuvants. The review also discusses the potential of DNA vaccine in pandemic settings such as that of corona virus disease 2019 (COVID-19)

References

Aguiar, J. C., Hedstrom, R. C., Rogers, W. O., Charoenvit, Y., Sacci, J.B., Lanar, D. E., Majam, V. F., Stout, R. R., and Hoffman, S. L. (2001). Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine, 20: 275-80. PMID: 11567774; https://doi.org/10.1016/S0264-410X(01)00273-0

Aiyer-Harini P.A, Ashok-Kumar, H. G., Kumar, G. P., and Neeta, S. (2013). An Overview of Immunologic Adjuvants - A Review. J Vaccines Vaccin 4 (1). DOI: 10.4172/2157-7560.1000167

Anand, P., and Stahel, V.P. (2021). The safety of Covid-19 mRNA vaccines: a review. Patient Saf Surg., 15: 20. https://doi.org/10.1186/s13037-021-00291-9

Berche, P. (2012). Louis Pasteur, from crystals of life to vaccination. Clinical Microbiology and Infection, 18 (s5): 1-6. https://doi.org/10.1111/j.1469-0691.2012.03945

Bettini, E., and Locci, M. (2021). SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines, 9(2): 147. https://doi.org/10.3390/vaccines9020147

Bolhassani, A., and Yazdi, S. R. (2009). DNA Immunization as an Efficient Strategy for Vaccination. Avicenna J Med Biotech, 1(2): 71-88

Bonanni, P., and Santos, J. I. (2011). Vaccine evolution. Understanding Modern Vaccines: Perspectives in Vaccinology, Volume 1/Issue 1/1e24

Catanzaro, A. T., Roederer, M., Koup, R. A., Bailer, R. T., Enama, M. E., Nason, M. C., Martin, J. E., Rucker, S., Andrews, C. A., Gomez, P. L., Mascola, J. R., Nabel, G. J., and Graham, B. S. (2007). VRC 007 Study Team: Phase I clinical evaluation of a six-plasmid multiclade HIV-l DNA candidate vaccine. Vaccine, 25(20): 4085-92.

Hasson, S. S. A. A., Al-Busaidi, J. K. Z., and Sallam, T. A. (2015). The past, current and future trends in DNA vaccine immunisations. Asian Pac J Trop Biomed., 5(5): 344-353

Hirao, L. A., Wu, L., Khan, A. S., Hokey, D. A., Yan, J., Dai, A., Betts, M. R., Draghia-Akli, R., and Weiner, D. B. (2008). Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine, 26(25): 3112–3120. https://doi.org/10.1016/j.vaccine.2008.02.036

Kaurav, M., Madan, J., Sudheesh, M. S., and Pandey, R. S. (2018). Combined adjuvant-delivery system for new generation vaccine antigens: alliance has its own advantage. Artificial Cells, Nanomedicine, and Biotechnology, 46 (NO. S3): S818–S831.

https://doi.org/10.1080/21691401.2018.1513941

Khan K. H. (2013). DNA vaccines: roles against diseases. Germs, 3(1): 26–35. https://doi.org/10.11599/germs.2013.1034

Kutzler, M. A., and Weiner, D.B. (2008). DNA vaccines: ready for prime time? Nat Rev Genet. 9(10): 776–788. doi:10.1038/nrg2432

Ledgerwood, J. E., Hu, Z., Gordon, I. J., Yamshchikov, G., Enama, M. E., Plummer, S., Bailer, R., Pearce, M. B., Tumpey, T. M., Koup, R. A., Mascola, J. R., Nabel, G. J., Graham, B. S., and VRC 304 and VRC 305 Study Teams (2012). Influenza virus h5 DNA vaccination is immunogenic by intramuscular and intradermal routes in humans. Clinical and vaccine immunology: CVI, 19(11): 1792–1797. https://doi.org/10.1128/CVI.05663-11

Leong, K. H., Ramsay, A. J., Boyle, D. B., and Ramshaw, I. A. (1994). Selective induction of immune responses by cytokines coexpressed in recombinant fowlpox virus. J Virol., 68: 8125-8130.

Li, L., and Petrovsky, N. (2016). Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 15(3): 313–329. doi:10.1586/14760584.2016.1124762

Lim, M., Badruddoza, A. Z. Md., Firdous, J., Azad, M., Mannan, A., Al-Hilal, T. A., Cho, C-S., and Islam, M.A. (2020). Engineered Nano delivery Systems to Improve DNA Vaccine Technologies. Pharmaceutics, 12: 30. doi:10.3390/pharmaceutics12010030

Moss, R. B. (2009). Prospects for control of emerging infectious diseases with plasmid DNA vaccines. Journal of Immune Based Therapies and Vaccines, 7: 3. doi:10.1186/1476-8518-7-3

Nascimento, I. P., and Leite, L. C. C. (2012). Recombinant vaccines and the development of new vaccine Strategies. Braz J Med Biol Res, 45(12): 1102-1111

Otten, G., Schaefer, M., Doe, B., Liu, H., Srivastava, I., zur Megede, J., O'Hagan, D., Donnelly, J., Widera, G., Rabussay, D., Lewis, M. G., Barnett, S., and Ulmer, J. B. (2004). Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine, 22(19): 2489-93. doi: 10.1016/j.vaccine.2003.11.073. PMID: 15193413.

Plotkin, S.A., and Plotkin, S.L. (2011). The development of vaccines: how the past led to the future Perspectives, 9: 889.

Rauch, S., Jasny, E., Schmidt, K. E., and Petsch, B. (2018). New Vaccine Technologies to Combat Outbreak Situations. Frontiers in immunology, 9 (article 1963): 1-24

Ramezanpour, B., Haan, I., Osterhaus, A. B., and Claassen, E. (2016). Vector-based genetically modified vaccines: Exploiting Jenner’s legacy. Vaccine, 34: 6436–6448

Rosa, D. S., Apostólico, J. D. S., and Boscardin, S. B. (2015). DNA Vaccines: How Much Have We Accomplished In The Last 25 Years? J Vaccines Vaccin, 6: 3. DOI: 10.4172/2157-7560.1000283

Saade, F., and Petrovsky, N. (2012). Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines. 11(2): 189–209. doi:10.1586/erv.11.188

Shang, W., Yang, Y., Rao, Y., and Rao, X. (2020). The outbreak of SARS-CoV-2 pneumonia calls for viral Vaccines. Nature Partner Journal, 5: 18. https://doi.org/10.1038/s41541-020-0170-0

Saroja, C.H., Lakshmi, P.K., Bhaskaran, S. (2011). Recent trends in vaccine delivery systems: A review. International Journal of Pharmaceutical Investigation| 1(2): 64-74

Silveira, M. M., Moreira, G. M. S. G, and Mendonça, M. (2021). DNA vaccines against COVID-19: Perspectives and challenges. Life Sciences, 267: 118919.

Smith, T., Patel, A., Ramos, S., Elwood, D., Zhu, X., Yan, J., Gary, E. N., Walker, S. N., Schultheis, K., Purwar, M., Xu, Z., Walters, J., Bhojnagarwala, P., Yang, M.,

Chokkalingam, N., Pezzoli, P., Parzych, E., Reuschel, E. L., Doan, A., Tursi, N., … Broderick, K. E. (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nature communications, 11(1): 2601. https://doi.org/10.1038/s41467-020-16505-0

Suschak, J. J., Williams, J. A., and Schmaljohn, C. S. (2017). Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity Human Vaccines & Immunotherapeutics, 13(12): 2837–2848 https://doi.org/10.1080/21645515.2017.1330236

Tahamtan, A., Charostad, J., Shokouh, S. J. H., and Barati, M. (2017). An Overview of History, Evolution, and Manufacturing of Various Generations of Vaccines. J Arch Mil Med., 5(3): e12315.

Tang, D. C., DeVit, M., and Johnston, S. A. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature, 356(6365): 152-4.

Ulmer, J. B., Donnelly, J. J., Parker, S. E., Rhodes, G. H., Felgner, P. L., Dwarki, V. J., Gromkowski, S. H., Deck, R. R., DeWitt, C. M., Friedman, A, Hawe, L. A., Leander, K. R., Martinez, D., Perry, H. C., Shiver, J. W., Montgomery, D. L., and Liu, M. A. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science, 259(5102): 1745-9. doi: 10.1126/science.8456302. PMID: 8456302

Wallis, J., Shenton, D. P., and Carlisle, R.C. (2019). Novel approaches for the design, delivery and administration of vaccine technologies. Clinical and Experimental Immunology, 196: 189–204

Williams, J.A. (2013). Vector Design for Improved DNA Vaccine Efficacy, Safety and Production Vaccines, 1: 225-249. doi:10.3390/vaccines1030225

Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A, Felgner, P. L. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247: 1465-8.

Wu, D., Wu, T., Liu, Q., Yang, Z. (2020). The SARS-CoV-2 Outbreak: What We Know International Journal of Infectious Diseases, 1-10

Yurina, V. (2018). DNA Vaccine: Mechanism of Action and Factors which Increase Its Efficacy. Journal of Reports in Pharmaceutical Sciences, 7(1): 92-100

Published
2022-01-28
How to Cite
OmajiG. O., AnakaaT. M., & IlounoL. E. (2022). DNA VACCINES: CHALLENGES AND APPROACHES. FUDMA JOURNAL OF SCIENCES, 5(4), 216 - 221. https://doi.org/10.33003/fjs-2021-0504-808