GROWTH AND YIELD RESPONSE OF SESAME (SESAMUM INDICUM L.) TO BITTER LEAF (VERNONIA AMYGDALINA DEL.) LEAF, STEM AND ROOT AQUEOUS EXTRACTS
DOI:
https://doi.org/10.33003/fjs-2021-0504-798Keywords:
Vernonia amygdalina, Sesamum indicum, Extracts, Germination, YieldAbstract
This study was carried out to assess the effect of leaf, stem and root aqueous extracts of Vernonia amygdalina on seed germination, growth and yield performance of Sesamum indicum. The aqueous extracts of the three plant parts were applied at concentrations of 25%, 50%, 75%, and 100% to sesame seeds in petri dish and compared with seeds treated with distilled water (control). The percentage of germinated seeds and lengths of radicle and plumule were measure within 10 days of sowing. The different concentrations of leaf, stem and root extracts of Vernonia amygdalina were applied to the seedlings of Sesamum indicum grown in pots and arranged in Complete Randomized Design (CRD). Data were obtained for number of germinated seeds, lengths of plumule and radicle while number of leaves, height of plant, stem girth, leaf length and leaf breadth were taken at 2,4, 6 and 8 Weeks After Planting (WAP). All data pooled were subjected to one way Analysis of Variance (ANOVA) and Duncan Multiple Range Test (DMRT) is used to separate means. Significant reduction in germination percentage of sesame seeds was recorded in sesame grown with 100% concentration of aqueous stem extracts of Vernonia amygdalina (78.33%) which indicates inhibitory effect of the extract at the concentration. 25% aqueous root extracts of Vernonia amygdalina significantly stimulated early growth of the shoot (1.70cm) and root (1.60cm) in sesame seed. In this study, growth and yield of sesame were enhanced by 50% root extract of Vernonia amygdalina. This suggests that intermediate concentrations of
References
Ajayi, O. O., Rasheed, K., Abiodun, O., & Toyese, O. (2020). Techno-economic Assessment of Transforming Sorghum Bagasse into Bioethanol Fuel in Nigeria: 1-Process Modeling, Simulation, and Cost Estimation. Journal of Engineering Studies and Research, 26(3), 154–164. http://jesr.ub.ro/1/article/view/219
Bardone, E., Bravi, M., Keshavarz, T., Dussán, K. J., Silva, D. D. v, Moraes, E. J. C., Arruda, P. v, & Felipe, M. G. A. (2014). Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chemical Eng Transactions, 38, 432–438. https://doi.org/10.3303/CET1438073
Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass, vol. 1, Woodhead Publishing Limited
Fan L., Gharpuray M.M., Lee YH. (1987) Design and Economic Evaluation of Cellulose Hydrolysis Processes. In: Cellulose Hydrolysis. Biotechnology Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72575-3_5
Fan L., Gharpuray M.M., Lee YH. (1987) Enzymatic Hydrolysis. In: Cellulose Hydrolysis. Biotechnology Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72575-3_3
Farone, W.A., Cuzens, J.E. (1996). Method of Producing Sugars Using Strong Acid Hydrolysis of Cellulosic and Hemicellulosic Materials. U.S. Patent No. 5,562,777.
Goldstein IS, Bayat-Makooi F, Sabharwal HS, Singh TM (1989) Acid recovery by electrodialysis and its economic implications for concentrated acid hydrolysis of wood. Appl Biochem Biotechnol 20:95–106. https://doi.org/10.1007/BF02936475
Gurgel, L. V. A., Marabezi, K., Zanbom, M. D., & Curvelo, A. A. da S. (2012). Dilute Acid Hydrolysis of Sugar Cane Bagasse at High Temperatures: A Kinetic Study of Cellulose Saccharification and Glucose Decomposition. Part I: Sulfuric Acid as the Catalyst. Industrial and Engineering Chemistry Research, 51(3), 1173–1185. https://doi.org/10.1021/IE2025739
Hata, T., Nonaka, H. Dilute acid hydrolysis of p-cresol-impregnated wood meal. Biomass Conv. Bioref. 8, 339–343 (2018). https://doi.org/10.1007/s13399-017-0282-6
Ingale, S., Joshi, S. J., & Gupte, A. (2014). Production of bioethanol using agricultural waste: Banana pseudo stem. Brazilian Journal of Microbiology, 45(3), 885–892. www.sbmicrobiologia.org.br
Isah, Y., Kabiru, H. D., Danlami, M. A., & Kolapo, S. F. (2019). Comparative Analysis of Bioethanol Produced From Cassava Peels and Sugarcane Bagasse by Hydrolysis Using Saccharomyces Cerevisiae. J. Chem Soc. Nigeria, 44(2), 233–238.
J. Iranmahboob, F. Nadim, S. Monemi (2002). Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips, Biomass Bioenerg., 22, pp. 401-404
J.V. Groenestijn, O. Hazewinkel, R. Bakker (2006). Pretreatment of lignocellulose with biological acid recycling (Biosulfurol process), Sugar Indust./Zuckerindust., 131, pp. 639-641
Jan W. Gooch (2007). Encyclopedic Dictionary of Polymers, 2007 Edition, NY: Springer Publisher. Hydrolysis. In: Gooch J.W. (eds) Encyclopedic Dictionary of Polymers. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30160-0_6034
Joseph B. Binder and Ronald T. Raines (2010). Fermentable sugars by chemical hydrolysis of biomass, PNAS March 9, 2010 107 (10) 4516-4521; https://doi.org/10.1073/pnas.0912073107
K.K. Janga, M.-B. Hägg, S.T. MoeInfluence of acid concentration, temperature, and time on decrystallization in two-stage concentrated sulfuric acid hydrolysis of pinewood and aspenwood: a statistical approach, BioResources, 7 (2012), pp. 391-411
Kang, S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340-362. https://www.sciencedirect.com/science/article/pii/S1364032118304520
Kang, S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340-362. https://www.sciencedirect.com/science/article/pii/S1364032118304520
Karimi, K., Kheradmandinia, S., & Taherzadeh, M. J. (2006). Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy, 30(3), 247–253. https://doi.org/10.1016/J.BIOMBIOE.2005.11.015
Klason P (1923) The lignin content of spruce. Svensk Papperstidning 26:319–322
Kobayashi H, Nakagawa M, Nakamura I (1977) Process development studies on itaconic acid production from saw dust. Nippon Nogei Kagaku Kaishi 51:551–559. https://doi.org/10.1271/nogeikagaku1924.51.9_551
Lee YH., Fan L.T., Fan LS. (1980) Kinetics of hydrolysis of insoluble cellulose by cellulase. In: Advances in Biochemical Engineering, Volume 17. Advances in Biochemical Engineering, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09955-7_10
Liang-tseng Fan, Mahendra Moreshwar Gharpuray, and Yong-Hyun Lee (1987) Biotechnology Monographs: Cellulose Hydrolysis, 1st Edition, New York, Springer-Verlag Publisher. https://link.springer.com/content/pdf/10.1007%2F978-3-642-72575-3.pdf
M.J. Selig, L.G. Thygesen, D.K. Johnson, M.E. Himmel, C. Felby, A. Mittal (2013). Hydration ands accharification of cellulose Iβ, II and IIII at increasing dry solids loadings, Biotechnol. Lett., 35 , pp. 1599-1607
M.J. Taherzadeh, K. Karimi (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review, BioResources, 2 , pp. 472-499
Madu, J. O., & Agboola, B. O. (2018). Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3 Biotech, 8(1), 1–6. https://doi.org/10.1007/s13205-017-1033-x
Monday Osagie, A. (2017). Statistical Investigation on the Hydrolysis and Fermentation Processes of Cassava Peels in the Production of Bioethanol. International Journal of Statistical Distributions and Applications, 3(3), 47–55. https://doi.org/10.11648/j.ijsd.20170303.14
N. Sathitsuksanoh, Z. Zhu, J. RollinSolvent fractionation of lignocellulosic biomass Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass, vol. 1, Woodhead Publishing Limited (2010)
N. Shahbazi, B. Zhang (2010). Dilute and concentrated acid hydrolysis of lignocellulosic biomass
Nanguneri SR, Hester RD (1990) Acid/sugar separation using ion exclusion resins: a process analysis and design. Sep Sci Technol 25:1829–1842. https://doi.org/10.1080/01496399008050427
Nnaemeka, I. C., O, E. S., I, O. M., Christain, A. O., S, O. C., Nnaemeka, I. C., O, E. S., I, O. M., Christain, A. O., & S, O. C. (2021). Optimization and Kinetic Studies for Enzymatic Hydrolysis and Fermentation of Colocynthis Vulgaris Shrad Seeds Shell for Bioethanol Production. Journal of Bioresources and Bioproducts, 6(1), 45–64. https://doi.org/10.1016/J.JOBAB.2021.02.004
Oyegoke, T., Obadiah, E., Mohammad, S. Y., Bamigbala, O. A., Owolabi, O. A., Oyegoke, A., Onadeji, A., & Mantu, A. I. (2021). Exploration of Biomass for the Production of Bioethanol: “Economic Feasibility and Optimization Studies of Transforming Maize Cob into Bioethanol as a Substitute for Fossil Fuels.†European Biomass Conference and Exhibition Proceedings, 1270–1275. https://doi.org/10.5071/29THEUBCE2021-4BV.9.13
P. Basu (2010). Biomass Gasification and Pyrolysis: Practical Design and Theory, Academic Press, Elsevier
Pedroso, G. B., Philippsen, M. R., Saldanha, L. F., Araujo, R. B., & Martins, A. F. (2019). Strategies for Fermentable Sugar Production by Using Pressurized Acid Hydrolysis for Rice Husks. Rice Science, 26(5), 319–330. https://doi.org/10.1016/J.RSCI.2019.08.006
S.K. Guha, H. Kobayashi, A. Fukuoka, (2010). Conversion of cellulose to sugars Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, vol. 1, RSC Publishing, pp. 344-364
S.T. Moe, K.K. Janga, T. Hertzberg, M.-B. Hägg, K. Øyaas, N. Dyrset (2012). Saccharification of lignocellulosic biomass for biofuel and biorefinery applications – a renaissance for the concentrated acid hydrolysis, Energy Procedia, 20, pp. 50-58
Shiraki, Y., Goto, T. & Nonaka, H. Concentrated sulfuric acid hydrolysis of softwood with t-butyl alcohol. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-019-00594-z
Størker T. Moea, Kando K. Jangaa, Terje Hertzberga. May-Britt Hägga, KarinØyaas, Nils Dyrset (2012). Saccharification of Lignocellulosic Biomass for Biofuel and Biorefinery Applications – A Renaissance for the Concentrated Acid Hydrolysis? Energy Procedia, Volume 20, 2012, Pages 50-58. https://doi.org/10.1016/j.egypro.2012.03.007
Tsunatu, D. Y., Atiku, K. G., Samuel, T. T., Hamidu, B. I., & Dahutu, D. I. (2017). Production of bioethanol from rice straw using yeast extract peptone dextrose. Nigerian Journal of Technology (NIJOTECH), 36(1), 296–301. https://doi.org/10.4314/njt.v36i1.36
Whitten KW, Davis RE, Davis E, Peck LM, Stanley GG (2003) General chemistry. Brookes/Cole, New York.
Xiang, Q., Kim, J.S. & Lee, Y.Y. A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 106, 337–352 (2003). https://doi.org/10.1385/ABAB:106:1-3:337
Y. Sun, J. Cheng (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., 83, pp. 1-11
Yanuar Philip Wijaya, Robertus Dhimas DhewanggaPutra, Vania TandaWidyaya, Jeong-Myeong Ha, Dong JinSuh, Chang Soo Kim (2014) Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, Volume 164, Pages 221-231 http://dx.doi.org/10.1016/j.biortech.2014.04.084
Yasuda S, Terashima N (1982) Chemical structures of sulfuric acid lignin. V. Reaction of three arylglycerol-β-aryl ethers [α-, β-, and γ-13C] with seventy-two percent sulfuric acid. Mokuzai Gakkaishi 28:383–387
Yoshihara K, Kobayashi T, Fujii T, Akamatsu I (1984) A novel modification of klason lignin quantitaitve method. Jpn Tappi J 38:466–475. https://doi.org/10.2524/jtappij.38.466
Z.-Y. Sun, Y.-Q. Tang, T. Iwanaga, T. Sho, K. Kida (2011). Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation, Bioresour. Technol., 102, pp. 10929-10935
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences