A BRIEF SURVEY OF BIOMASS HYDROLYSIS AS A VITAL PROCESS IN BIO-REFINERY

  • Geoffrey Timothy TONGSHUWAR Biochemistry Department, Federal University Dutsinma, Nigeria https://orcid.org/0000-0002-8801-8525
  • Toyese OYEGOKE Chemical Engineering Department, Faculty of Engineering, Ahmadu Bello University, Samaru Campus, Zaria, Kaduna State Nigeria
Keywords: Biomass, Biorefinery, Hydrolysis, Renewable Chemicals, Monosaccharides

Abstract

This report presents a mini-survey of biomass hydrolysis, which tends to unfold the concept of what the process is all about, categories involved, and reporting concerning the processes involved in each category. The categories entail the chemical and biological means where acid catalysts and enzymes are used, respectively, including reports of some works carried out in the literature. 

Author Biographies

Geoffrey Timothy TONGSHUWAR, Biochemistry Department, Federal University Dutsinma, Nigeria

A Researcher with interest in Biochemistry and Biochemical Issues

Toyese OYEGOKE, Chemical Engineering Department, Faculty of Engineering, Ahmadu Bello University, Samaru Campus, Zaria, Kaduna State Nigeria

A registered and licensed chemical engineer, also a devoted researcher with a special interest molecular modeling, DFT, biorefineries, process modeling, simulation and reaction kinetics.

References

Ajayi O.O., Rasheed K., Abiodun O., and Toyese O., (2020). Techno-economic Assessment of Transforming Sorghum Bagasse into Bioethanol Fuel in Nigeria: 1-Process Modeling, Simulation, and Cost Estimation. Journal of Engineering Studies and Research, 26(3), 154–164. http://jesr.ub.ro/1/article/view/219

Bardone E., Bravi M., Keshavarz T., Dussán K. J., Silva D.D.v, Moraes E.J.C., Arruda P.v, and Felipe M.G.A., (2014). Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chemical Eng Transactions, 38, 432–438. https://doi.org/10.3303/CET1438073

Waldron K.W., (2010). Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass, Vol. 1, Woodhead Publishing Limited

Fan L., Gharpuray M.M., and Lee Y.H. (1987) Design and Economic Evaluation of Cellulose Hydrolysis Processes. In: Cellulose Hydrolysis. Biotechnology Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72575-3_5

Fan L., Gharpuray M.M., and Lee Y.H., (1987) Enzymatic Hydrolysis. In: Cellulose Hydrolysis. Biotechnology Monographs, Vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72575-33

Farone W.A., and Cuzens J.E., (1996). Method of Producing Sugars Using Strong Acid Hydrolysis of Cellulosic and Hemicellulosic Materials. U.S. Patent, No. 5,562,777.

Goldstein I.S., Bayat-Makooi F., Sabharwal H.S., and Singh T.M., (1989) Acid recovery by electrodialysis and its economic implications for concentrated acid hydrolysis of wood. Appl Biochem Biotechnol 20, 95–106. https://doi.org/10.1007/BF02936475

Gurgel L.V.A., Marabezi K., Zanbom M.D., and Curvelo A.A. da S., (2012). Dilute Acid Hydrolysis of Sugar Cane Bagasse at High Temperatures: A Kinetic Study of Cellulose Saccharification and Glucose Decomposition. Part I: Sulfuric Acid as the Catalyst. Industrial and Engineering Chemistry Research, 51(3), 1173–1185. https://doi.org/10.1021/IE2025739

Hata T., and Nonaka H., (2018). Dilute acid hydrolysis of p-cresol-impregnated wood meal. Biomass Conv. Bioref. 8, 339–343. https://doi.org/10.1007/s13399-017-0282-6

Ingale S., Joshi S. J., and Gupte A., (2014). Production of bioethanol using agricultural waste: Banana pseudo stem. Brazilian Journal of Microbiology, 45(3), 885–892.

Isah Y., Kabiru H. D., Danlami M. A., and Kolapo S. F., (2019). Comparative Analysis of Bioethanol Produced From Cassava Peels and Sugarcane Bagasse by Hydrolysis Using Saccharomyces Cerevisiae. J. Chem Soc. Nigeria, 44(2), 233–238.

Iranmahboob J., Nadim F., and Monemi S., (2002). Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips, Biomass Bioenerg., 22, 401-404

Groenestijn J.V., Hazewinkel O., and Bakker R., (2006). Pretreatment of lignocellulose with biological acid recycling (Biosulfurol process), Sugar Indust./Zuckerindust, 131, 639-641

Jan W. G., (2007). Encyclopedic Dictionary of Polymers, NY: Springer Publisher. Hydrolysis. In: Gooch J.W. (eds) Encyclopedic Dictionary of Polymers. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30160-0_6034

Joseph B.B., and Ronald T.R., (2010). Fermentable sugars by chemical hydrolysis of biomass, PNAS, 107(10), 4516-4521; https://doi.org/10.1073/pnas.0912073107

Janga K.K, Hägg M.-B., and Hagg S.T., (2021) MoeInfluence of acid concentration, temperature, and time on decrystallization in two-stage concentrated sulfuric acid hydrolysis of pinewood and aspenwood: a statistical approach, BioResources, 7, 391-411.

Kang S., Fu J., and Zhang, G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340-362. https://www.sciencedirect.com/science/article/pii/S1364032118304520

Kang S., Fu J., and Zhang G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340-362. https://www.sciencedirect.com/science/article/pii/S1364032118304520

Karimi K., Kheradmandinia S., and Taherzadeh M. J. (2006). Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy, 30(3), 247–253. https://doi.org/10.1016/J.BIOMBIOE.2005.11.015

Klason P., (1923) The lignin content of spruce. Svensk Papperstidning 26:319–322

Kobayashi H., Nakagawa M., and Nakamura I., (1977) Process development studies on itaconic acid production from saw dust. Nippon Nogei Kagaku Kaishi, 51, 551–559. https://doi.org/10.1271/nogeikagaku1924.51.9_551

Lee Y.H., Fan L.T., and Fan L.S., (1980) Kinetics of hydrolysis of insoluble cellulose by cellulase. In: Advances in Biochemical Engineering, Vol. 17, Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09955-7_10

Liang-tseng F., Mahendra M. G., and Yong-Hyun L. (1987) Biotechnology Monographs: Cellulose Hydrolysis, 1st Edition, New York, Springer-Verlag Publisher. https://link.springer.com/content/pdf/10.1007%2F978-3-642-72575-3.pdf

Selig M.J., Thygesen L.G., Johnson D.K., Himmel M.E., Felby C., and Mittal A., (2013). Hydration ands accharification of cellulose Iβ, II and IIII at increasing dry solids loadings, Biotechnol. Lett., 35, 1599-1607

Taherzadeh M.J., and Karimi K., (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review, BioResources, 2, 472-499.

Madu J.O., and Agboola B.O., (2018). Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3 Biotech, 8(1), 1–6. https://doi.org/10.1007/s13205-017-1033-x

Monday Osagie, A. (2017). Statistical Investigation on the Hydrolysis and Fermentation Processes of Cassava Peels in the Production of Bioethanol. International Journal of Statistical Distributions and Applications, 3(3), 47–55. https://doi.org/10.11648/j.ijsd.20170303.14

Sathitsuksanoh N., Zhu Z., and Rollin J., (2010). Solvent fractionation of lignocellulosic biomass Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass, Vol. 1, Woodhead Publishing Limited.

Shahbazi N., and Zhang B., (2010). Dilute and concentrated acid hydrolysis of lignocellulosic biomass

Nanguneri S.R., and Hester R.D., (1990) Acid/sugar separation using ion exclusion resins: a process analysis and design. Sep Sci Technol, 25, 1829–1842. https://doi.org/10.1080/01496399008050427

Nnaemekaa I.C., Egbuna S.O., Onoh M., Asadu O.C., and Onyekwulu C.S., (2021). Optimization and Kinetic Studies for Enzymatic Hydrolysis and Fermentation of Colocynthis Vulgaris Shrad Seeds Shell for Bioethanol Production. Journal of Bioresources and Bioproducts, 6(1), 45–64. https://doi.org/10.1016/J.JOBAB.2021.02.004

Oyegoke T., Obadiah E., Mohammad S. Y., Bamigbala O. A., Owolabi O. A., Oyegoke A., Onadeji A., and Mantu A. I. (2021). Exploration of Biomass for the Production of Bioethanol: “Economic Feasibility and Optimization Studies of Transforming Maize Cob into Bioethanol as a Substitute for Fossil Fuels.†European Biomass Conference and Exhibition Proceedings, 1270–1275. https://doi.org/10.5071/29THEUBCE2021-4BV.9.13

Basu P., (2010). Biomass Gasification and Pyrolysis: Practical Design and Theory, Academic Press, Elsevier

Pedroso G. B., Philippsen M. R., Saldanha L. F., Araujo R. B., and Martins A. F. (2019). Strategies for Fermentable Sugar Production by Using Pressurized Acid Hydrolysis for Rice Husks. Rice Science, 26(5), 319–330. https://doi.org/10.1016/J.RSCI.2019.08.006

Guha S. K., Kobayashi H., and Fukuoka A., (2010). Conversion of cellulose to sugars Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Vol. 1, RSC Publishing, pp. 344-364

Moe S. T., Janga K. K., Hertzberg T., Hägg M. B., Øyaas K., and Dyrset N., (2012). Saccharification of lignocellulosic biomass for biofuel and biorefinery applications – a renaissance for the concentrated acid hydrolysis, Energy Procedia, 20, 50-58

Shiraki Y., Goto T., and Nonaka H., (2020). Concentrated sulfuric acid hydrolysis of softwood with t-butyl alcohol. Biomass Conv. Bioref. . https://doi.org/10.1007/s13399-019-00594-z

Størker T. M., Kando K. J., Terje H., May-Britt H., and KarinØyaas N.D., (2012). Saccharification of Lignocellulosic Biomass for Biofuel and Biorefinery Applications – A Renaissance for the Concentrated Acid Hydrolysis?, Energy Procedia, 20, 50-58. https://doi.org/10.1016/j.egypro.2012.03.007

Tsunatu D. Y., Atiku K. G., Samuel T. T., Hamidu B. I., and Dahutu D. I. (2017). Production of bioethanol from rice straw using yeast extract peptone dextrose. Nigerian Journal of Technology (NIJOTECH), 36(1), 296–301. https://doi.org/10.4314/njt.v36i1.36

Whitten K.W., Davis R.E., Davis E., Peck L.M., and Stanley G.G., (2003). General chemistry. Brookes/Cole, New York.

Xiang Q., Kim J.S., and Lee Y.Y., (2003). A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 106, 337–352 (2003). https://doi.org/10.1385/ABAB:106:1-3:337

Sun Y., and Cheng J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., 83, 1-11

Yanuar P. W., Robertus D., Dhewangga P., Vania T.W., Jeong-Myeong H., Dong J.S., and Chang S.K., (2014) Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresource Technology, 164, 221-231. http://dx.doi.org/10.1016/j.biortech.2014.04.084

Yasuda S., and Terashima N., (1982) Chemical structures of sulfuric acid lignin. V. Reaction of three arylglycerol-β-aryl ethers [α-, β-, and γ-13C] with seventy-two percent sulfuric acid. Mokuzai Gakkaishi, 28, 383–387.

Yoshihara K., Kobayashi T., Fujii T., amd Akamatsu I., (1984) A novel modification of klason lignin quantitaitve method. Jpn Tappi Journal, 38, 466–475. https://doi.org/10.2524/jtappij.38.466

Sun Z.Y., Tang Y.Q., Iwanaga T., Sho T., and Kida K., (2011). Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation, Bioresour. Technol., 102, pp. 10929-10935

Published
2021-11-04
How to Cite
TONGSHUWAR G. T., & OYEGOKET. (2021). A BRIEF SURVEY OF BIOMASS HYDROLYSIS AS A VITAL PROCESS IN BIO-REFINERY. FUDMA JOURNAL OF SCIENCES, 5(3), 407 - 412. https://doi.org/10.33003/fjs-2021-0503-724