THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITIONS.

  • Aniefiok Akpaneno Federal University Dutsinm-ma
  • Matthew Joshua
  • K. R. Ekundayo
Keywords: Equatorial Electrojet, Counter Electrojet, Ionosphere

Abstract

Solar quiet current (S_q) and Equatorial Electrojet (EEJ) are two current systems which are produced by electric current in the ionosphere.  The enhancement of the horizontal magnetic field is the EEJ. This research is needed for monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. This study presents the longitudinal and latitudinal variation of equatorial electrojet signature at stations within the 96°mm and 210°mm African and Asian sectors respectively during quiet condition. Data from eleven observatories were used for this study. The objectives was  to determine the longitudinal and latitudinal geomagnetic field variations during solar quiet conditions, Investigate monthly variation and diurnal transient seasonal variation; Measure the strength of the EEJ at stations within the same longitudinal sectors and find out the factors responsible for the longitudinal and latitudinal variation of EEJ. Horizontal (H) component of geomagnetic field for the year 2008 from Magnetic Data Acquisition System (MAGDAS) network were used for the study. The International Quiet Days (IQDs) were used to identify quiet days. Daily baseline values for each of the geomagnetic element H  were obtained.  The monthly average of the diurnal variation was found. The seasonal variation of dH was found. Results showed that: The longitudinal and latitudinal variation in the dH differs in magnitude from one station to another within the same longitude due to the difference in the influence of the EEJ on them.

References

Akpaneno, A. F. and Adimula, I, A. (2015). Variability of H component of the geomagnetic field at some equatorial electrojet stations. Sun and Geospher 10:65-77

Alex, S., Jadhav, L., and Roa, D.R.K. (1992).Complexity in the Variation of component (D) of the geomagnetic field in the Indian region.Geol. Soc. Indian Man; 24:263-274

Anderson, D., Aranjo-Pradere, E., and Scherliess, L. (2009). Comparing daytime equatorial E×B drift velocities and TOPEX/TEC observations associated 4-cell non-migrating tidal structure. Ann Geophys. 27: 2861-2867.

Bartels, J., and Johnston, H.F.. (1940). Geomagnetic tides in horizontal intensity at Huancayo. Terr. Magn. Atmos. Electr. 45, 269–308

Bhargava, B.N., and Sastri, N.S., (1977). A comparison of days with and without occurrence of counter electrojet afternoon events in the Indian region. Ann. Geophys. 33, 329–333

Blanc, M., and Richmond, A.D., (1980). The ionospheric disturbance dynamo. J. Geophys. Res.85(A4), 1669–1686

Bolaji, O. S., Oyeyemi, E. O., Fagundes, P. R., deAbreu, A. J., deJesus, R., Rabiu, A. B., and Yoshikawa, A. (2014). Counter Electrojet Events using Ilorin Observations during a Low Solar Activity Period, The African Review of Physics, 9, 361–376.

Campbell, W. H. (2003). Introduction to geomagnetic fields (2nd ed.). New York: Cambridge University Press. ISBN 978-0-521-52953-2.

Chapman, S. (1951). The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo and elsewhere. Arch. Meteorl. Geophys. Bioclimatol. A,4: 368-392.

Chapman, S., and Raja Rao, K. S. (1965). Some phenomena of the upper Atmosphere J. Atmos. Terr. Phys. 27, 559-581

Chandra, H., Mistra, R. K. and Rastogi, R. G. (1971) Planet. Space Sci. 19, 1497-1503.

Chandra, H., Sinha, H. S. S. and Rastogi, R. G. (2000). Equatorial electrojetstudies from rocket and ground measurements. Earth Planets Space. 52, 11-120

Egedal, J. (1947). The magnetic diurnal variation of the horizontal force near the equator; Terr.Magn.Atmos.Electri.,52(4),449-451, doi: 10.1029/TE052i004p00449

Fang, T. W., Richmond, A. D., Liu, J. Y. and Maute, A. (2008). Wind dynamo effects on ground magnetic perturbation and vertical drifts. J. Geophys. Res. 113: A11313.

Fang, T. W., Richmond, A. D., Liu, L. Y. and Maute, A., Lin, C. H., Chen, C. H., and Harper, B.(2008). Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors. J. Atm. Sol. Terr. Phys. 70, 2203-2211

Fejer, B.G., Olson, M.E., Chau, J.L., Stolle, C., Lühr. H., Goncharenko, L.P., Yumoto, K., and Nagatsuma, T.(2010). Lunardependent equatorial ionosphericelectrodynamic effects during sudden stratospheric warmings. J. Geophys. Res. 115, A00G03 doi:10.1029/2010JA015273

Forbes, J.M., and Lindzen,R.S.. (1976b). Atmospheric solar tides and their electrodynamic effects, II the equatorial electrojet. J. Atmos. Terr. Phys. 38, 911–920

Forbes,J. M., (1981). The equatorial electrojet. Rev.Geophys., 19,469-504

Fuller-Rowell,T.J.,Millward, G.H, Richmond, A.D., and Codrescu, M.V., (2002). Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Sol.-Terr. Phys. 64,1383–1391

Fuller-Rowell, T.J., Akmaev, R. A., Wu, F., Anghel, A., Maruyama, N., Anderson, D. N., Codrescu, M. V.,Iredell, M., Moorthi, S., Juang, H. M., Hou, Y. T., Millard, G. (2008). Impact of terrestrial weather on the upper atmosphere. Geophys., Res., Lett. 35: L09808.

Gouin, P., Mayaud, P. N. (1967). Ann. Geophys. 23, 41-47.

Gurubaran S., (2002). The equatorial counter electrojet: Part of a worldwide current system? Geophys. Res. Lett. 29, 1337 doi:10.1029/2001GL014519

Hanuise, C., Mazaudier, C., Vila, P., Blanc, M., and Crochet, M.. (1983). Global dynamo simulation of ionospheric currents and their connection with the equatorial electrojet and counter electrojet: a case study. J. Geophys. Res. 88, 253–270

Hutton, R. (1962). The interpretation of low latitude geomagnetic daily variations. Ann. Geophys., 26: 927-933.

Immel, T. W., Sagawa, E., Egland, S. L.,, Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Sweson, C. M. and Paxton, L. J. (2006). Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33: L15108

Jadhav, G., Rajaram, M., and Rajaram, R. (2002). A detailed study of equatorial electrojet phenomenon using oersted satellite observations, J. Geophys. Res., 107, 1175, doi:10.1029/2001JA000183.

Jin,H., Miyoshi, Y., Fujiwara, H., Shinagawa, H., Terada, K., Terada, N., Ishii, M., Otsuka, Y. and Saito, A. (2011). Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphete-ionosphere coupled model. J. Geophys. Res. 116: A01316

Khashaba, I.A., and Ghamry, E., (2015). Longitudinal Dependence and Seasonal Effect of Equatorial Electrojet using MAGDAS Data. J. Geol. Geophys 5:235. Doi: 10.4172/2381- 8713.1000235

Kikuchi, T., Hashimoto, K.K., Kitamura, T.-I., Tachihara, H., and Fejer, B. (2003). Equatorial counterelectrojets during substorms. J. Geophys. Res. 108(A11), 1406 doi:10.1029/2003JA009915

Kikuchi, T., Hashimoto, K.K., and Nozaki K., (2008). Penetration of magnetospheric electric fields to theequator during a geomagnetic storm. J. Geophys. Res. 113, A06214 doi:10.1029/2007JA012628

Labitzke, K., and Van Loon H., (1993). Some recent studiesof probable connections between solar and atmospheric variability: Annals of Geophysical Research

Le Huy, M., and Amory-Mazaudier, C., (2005). Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: dyn. J. Geophys. Res. 110, A10301 doi:10.1029/2004JA010578

Marriott, R.T., Richmond, A.D., and Venkateswaran, S.V., (1979). The quiet-time equatorial electrojet and counterelectrojet. J. Atmos. Sol.-Terr. Phys. 31, 311–340

Matsushita, S. (1969). Dynamo currents, winds, and electric fields. Radio Sci., 4: 771-776.

Mayaud, P.N. (1977). The equatorial counter-electrojet—a review of its geomagnetic aspects. J. Atmos. Terr. Phys. 39, 1055–1070

Muralikrishna, P., and Kulkarni, V.H., (2008). Modeling the meteoric dust effect on the equatorial electrojet. Adv. Space Res. 42, 164–170 (2008). doi:10.1016/asr.2007.11.019

Okeke, F. N. and Onwumechili, C. A., (1995). Preliminary analysis of geomagnetic day to day variations in the equatorial zone. AIP conference proceedings 320, 49(1995): doi

Onwumechili, C. A. (1960). Fluctuations in the geomagnetic field near the magnetic equator. J. Amos.Terr. Phys., 17: 286-294.

Onwumechili, C. A.( 1997). The Equatorial Electrojet. Gordon and Breach Science Publishers, the Netherlands, 627 pp.

Oyekola, S. O. (2009). Equatorial F-region vertical ion drifts during quite solar maximum. Advances in Space Research, 43, 1950-1956.

Prolss, G. W. (1987). Storm-induced changes in the thermospheric composition at middle latitudes, Planet. Space Sci, 35, 807-811.

Rabiu, A. B., Folarin, O. O., Uozumi, T., Abdul Hamid, N. S., and Yoshikawa, A., (2017). Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet, Ann.Geophys., 35, 535-545,doi:10.5194/angeo-35-535-2017.

Rabiu, A. B., (2015). Terrestrial and extraterrestrial Divine nexus for man’s comfort. Inaugural lecture series to; FUTA BDC,17-19

Rabiu, A. B., and Nagarajan, N., (2006). A paper on ‘The morphology of equatorial electrojet over Indian sector’. Department of Physics, Federal University of Technology, Akure, Nigeria. National Geophysical Research Institute, Hyderabad 500 007, India.

Rabiu, A. B., Yumoto, K., Falayi, E. O., Bello, O. R., and MAGDAS/CPMN Group (2011). Ionosphere over Africa: Results from geomagnetic field measurement during international Heliophysical Year IHY, Journal of Sun and Geosphere, 6, 61–64.

Raghavarao, R., and Anandarao,B.G.. (1980). Vertical winds as a plausible cause for equatorial counter electrojet. Geophys. Res. Lett. 7, 357–360

Rastogi, R. G.(1962). Longitudinal variation in the equatorial electrojet, J. Atmos. Terr. Phys., 24, 1031–1040.

Rastogi, R.G., and Patel, V.L. (1975). Effect of interplanetary magnetic field on ionosphere over the magnetic equator. Proc. Indian Acad. Sci. A82, 121–141

Rastogi, R.G. (1977). Geomagnetic storms and electric fields in the equatorial ionosphere. Nature 268, 422–424

Rastogi, R.G. (1997). Midday reversal of equatorial ionospheric electric field. Ann. Geophys. 15, 1309–1315

Rastogi, R.G. (1974). Lunar effects in the counter electrojet near the magnetic equator. J. Atmos. Terr. Phys. 36, 167–170

Rastogi, R.G., Alex, S.,and Patil, A., (1994). Seasonal variations of geomagnetic D, H and Z fields at low latitudes. J. Geomagn. Geoelectr. 46, 115–126

Rastogi, R. G., and Iyer, K. N. (1976). Quiet day variation of geomagnetic H-field at low latitudes. J.Geomagn. Geoelectr., 28: 461-479.

Richmond, A. D., (1973).Equatorial electrojet I. Development of a model including winds and instabilities. J.Atmos. Terr. Phys., 35, 1083-1103

Roy, M. and Rao, D. R. K., (1998)Frequency dependence of equatorial electrojet effect on geomagnetic micropulsations, Earth Planets Space, 50, 847–851,

Sastri, N.S., and Arora,B.R.. (1981). Lunar modulation of the occurrence frequency of the afternoon counter-electrojet events at Trivandrum. Planet. Space Sci. 10, 1091–1094

Sridharan, S., Sathishkumar, S., Gurubaran, S. (2009).Variability of mesospheric tides and equatorial electrojet strength during major stratospheric warming events. Ann. Geophys. 27, 4125– 4130

Stenin, R. J. (1975). Problems of identifying lunar geomagnetic effects at Huancayo. J. Geomagn. Geoelectr. 27: 409-424

Stening, R.J., (1977b). Magnetic variations at other latitudes during reverse equatorial electrojet. J. Atmos. Terr. Phys. 39, 1071–1077

Stening, R.J., Meek, C.E., and Manson, A.H. (1996). Upper atmosphere wind systems during reverse equatorial electrojet events. Geophys. Res. Lett. 23, 3243–3246

Takeda, M., and Maeda, H.. (1981). Three-dimensional structure of ionospheric currents, 2: currents caused by semidiurnal tidal winds. J. Geophys. Res. 86, 5861–5867

Takeda, M., and Maeda, H., (1980b). Equivalent Sq current system at occasions of the equatorial counter electrojet. J. Geomagn. Geoelectr. 32, 297–301

Tarpley, J. D. (1973). Seasonal movement of S_qcurrent foci and related effects in the equatorial electrojet. J. Atmos. Terr. Phys. 35, 1063-1071.

Vineeth, C., Mridula, N., Muralikrishna, P., Kumar, K.K., and Pant, T.K., (2016). First observational evidence for the connection between the meteoric activity and occurrence of equatorial counter electrojet. J. Atmos. Sol.-Terr. Phys. 147, 71–75

Yamazaki, Y., Yumoto, K., McNamara, D., Hirooka, T., Uozumi, T., Kitamura, K., Abe,S.,and Ikeda A., (2012a). Ionospheric current system during sudden stratospheric warming events. J. Geophys.Res. 117, A03334 doi:10.1029/2011JA017453

Yamazaki, Y., Kosch, M.J., and Emmert, J.T., (2015). Evidence for stratospheric sudden warming effects on the upper thermosphere derived from satellite orbital decay data during 1967– 2013. Geophys. Res. Lett. 42, 6180–6188 doi:10.1002/2015GL065395

Yizengaw, E., Moldwin, M. B., Zesta, E., Biouele, C. M., Damtie, B., Mebrahtu, A., Rabiu, B., Valladares, C. F., and Stoneback, R.( 2014). The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors, Ann. Geophys., 32, 231–238, doi:10.5194/angeo-32-231-2014.

Yumoto, K. and The CPMN Group, (2001). Characteristics of Pi 2 magnetic pulsations observed at the CPMN stations. A review of the STEP results, Earth Planet Space, Vol. 53pp. 981-992

http://www.amateur-radio-wiki.net/index.php?title=propagation)

http://www.en.wikipedia.org/wiki/ionosphere

http://www.navipedia.net/index.php/Nequick_ionospheric_model

Published
2021-07-15
How to Cite
AkpanenoA., JoshuaM., & EkundayoK. R. (2021). THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITIONS. FUDMA JOURNAL OF SCIENCES, 5(2), 531 - 552. https://doi.org/10.33003/fjs-2021-0502-662