CANDIDA DIAGNOSTIC PLATFORMS: ESSENTIAL IN EARLY MANAGEMENT OF CANDIDA INFECTIONS

  • Yahaya Hassan
  • Ibrahim Aminu
  • Sharif Alhassan Abbdullahi
Keywords: Invasive candidiasis; diagnosis; culture; PCR; biochemical methods

Abstract

Invasive candidiasis (IC) is associated with high morbidity and mortality. Candida species have significant roles in invasive candidiasis andthe emergence of clinical strains that are difficult to treat due tovirulent and resistant properties. Expansion of fungal pathogen diversity necessitates the development and adoption of new methods for prompt diagnosis and management. The review aimed to highlight the relevance of different Candida diagnostic methods for prompt management of Candida infections. The conventional gold standard diagnostic phenotypic-based (culture)method is time-consuming, associated withlow specificity and subjective interpretation.The specificity and sensitivity performances for candidaemia or deep-seated candidiasis of biochemical-based methods, including VITEK, API 20C AUX, and latex agglutination, have higher resolution than the culture. Nucleic acid-basedpolymerase chain reaction diagnostic techniques have been rapidly evolving. PCR will improve the diagnostic performance and patient outcome. The PCR technique uses different ribosomal DNA gene complexes, including D1/D2, ITS1/ITS4, or IGS1/IGS2, ashelpful markersto delineate the main pathogenic fungal species belonging to different genera. Sensitive and specific diagnostic methods for Candida speciesare significant for clinical decision and effective clinical outcome.

References

1. Arastehfar A, Boekhout T, Butler G, Buda De Cesare G, Dolk E, Gabaldóln T, et al. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiology Reviews. 2019;(May):517–47.
2. Davidson L, Netea MG, Kullberg BJ. Patient Susceptibility to Candidiasis—A Potential for Adjunctive Immunotherapy. Journal of Fungi [Internet]. 2018;4(1):9. Available from: http://www.mdpi.com/2309-608X/4/1/9
3. Zhou Y, Liao M, Zhu C, Hu Y, Tong T, Peng X, et al. ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection article. International Journal of Oral Science. 2018;10(2).
4. Kontoyiannis, D. P., & Slavin, M. (2019). Fungal Infections in Immunocompromised Hosts . MDPI- Multidisciplinary Digital Publishing Institute. 2019;2019.
5. Bongomin F, Gago S, Oladele R, Denning D. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. Journal of Fungi [Internet]. 2017;3(4):57. Available from: http://www.mdpi.com/2309-608X/3/4/57
6. Bamba S, Zida A, Sangaré I, Cissé M, Denning D, Hennequin C. Burden of Severe Fungal Infections in Burkina Faso. Journal of Fungi [Internet]. 2018;4(1):35. Available from: http://www.mdpi.com/2309-608X/4/1/35
7. Arvanitis et al. 2014. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clinical Microbiology Reviews. 2014;27(3):490–526.
8. Marcelo C, Farooq F. A Trich-y Fungus: A Unique Presentation of Disseminated Trichosporon mycotoxinivorans Infection. J Pioneer Med Sci [Internet]. 2018;8(2):37–40. Available from: www.jpmsonline.com
9. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nature Reviews Disease Primers [Internet]. 2018 May 11;4:18026. Available from: https://doi.org/10.1038/nrdp.2018.26
10. Gago S. Ribosomic DNA intergenic spacer 1 region is useful when identifying Candida parapsilosis spp. complex based on high-resolution melting analysis. Medical mycology. 2014;52(5):472–81.
11. Xu J, Adamowicz S. Fungal DNA barcoding 1. Genome [Internet]. 2016;59(11):913–32. Available from: http://www.nrcresearchpress.com/doi/10.1139/gen-2016-0046
12. Pfeiffer CD, Samsa GP, Schell WA, Reller LB, Perfect JR, Alexander BD. Quantitation of Candida CFU in initial positive blood cultures. Journal of Clinical Microbiology. 2011;49(8):2879–83.
13. Clancy CJ, Nguyen MH. Diagnosing invasive candidiasis. Journal of Clinical Microbiology. 2018;56(5):1–9.
14. Fidler G, Leiter E, Kocsube S, Biro S, Paholcsek M. Validation of a simplex PCR assay enabling reliable identification of clinically relevant Candida species. BMC Infectious Diseases. 2018;18(1):1–13.
15. Hong G, Miller HB, Allgood S, Lee R, Lechtzin N, Zhang SX. Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients. Journal of Clinical Microbiology. 2017;55(4):1122–30.
16. Vanhe LME, Meersseman W, Lagrou K, Maertens J, Nelis HJ, Coenye T. Rapid and direct quantification of viable candida species in whole blood by use of immunomagnetic separation and solid-phase cytometry. Journal of Clinical Microbiology. 2010;48(4):1126–31.
17. Babu BK, Saikia R, Arora DK. Molecular characterization and diagnosis of Macrophomina phaseolina: A charcoal rot fungus. Molecular Identification of Fungi. 2010. 179–193 p.
18. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. Journal of Fungi. 2017;3(4).
19. Phoompoung P, Chayakulkeeree M. Recent Progress in the Diagnosis of Pathogenic Candida Species in Blood Culture. Mycopathologia. 2016;181(5–6):363–9.
20. Yahaya, H., Taura D. W., Gwarzo, M. Y., Ibrahim, A, Ali, B., Muhammad AB. Diversity of Respiratory Yeasts from Suspected Pulmonary Tuberculosis Patients 1. 2014;2:3145–50.
21. Rodrigues CF, Silva S, Henriques M. Candida glabrata: A review of its features and resistance. European Journal of Clinical Microbiology and Infectious Diseases. 2014;33(5):673–88.
22. Sasso M, Roger C, Lachaud L. Rapid emergence of FKS mutations in Candida glabrata isolates in a peritoneal candidiasis. Medical Mycology Case Reports [Internet]. 2017;16(April):28–30. Available from: http://dx.doi.org/10.1016/j.mmcr.2017.04.004
23. Kumar A, Sachu A, Mohan K, Vinod V, Dinesh K, Karim S. Diferenciación sencilla y de bajo coste de Candida auris del complejo Candida haemulonii con el empleo del medio CHROMagar Candida enriquecido con medio de Pal. Revista Iberoamericana de Micologia [Internet]. 2017;34(2):109–11. Available from: http://dx.doi.org/10.1016/j.riam.2016.11.004
24. Deorukhkar SC. Identification of Candida Species: Conventional Methods in the Era of Molecular Diagnosis. Annals of Microbiology and Immunology [Internet]. 2018;1(1):1002. Available from: http://www.remedypublications.com/annals-of-microbiology-and-immunology/articles/pdfs_folder/ami-v1-id1002.pdf
25. Yahaya H, Taura DW, Aliyu IA, Bala JA, Yunusa I, Ahmad IM, et al. Spectrum of opportunistic mould infections in suspected pulmonary tuberculosis ( TB ) patients Spectrum of opportunistic mould infections in suspected pulmonary tuberculosis ( TB ) patients. International Journal of Microbiology and Application [Internet]. 2015;2(August):5–11. Available from: http://www.openscienceonline.com/journal/ijma
26. Melhem MSC, Bertoletti A, Lucca HRL, Silva RBO, Meneghin FA, Szeszs MW. Use of the VITEK 2 system to identify and test the antifungal susceptibility of clinically relevant yeast species. Brazilian Journal of Microbiology. 2013;44(4):1257–66.
27. Saha S, Banerjee D, Khetan A, Sengupta J. Epidemiological profile of fungal keratitis in Urban population of West Bengal, India. Oman Journal of Ophthalmology [Internet]. 2009;2(3):114–8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150140/?report=printable
28. Bharathi R. Comparison of chromogenic media with the corn meal agar for speciation of candida. Journal of Pure and Applied Microbiology. 2018;12(3):1617–22.
29. Merseguel KB, Nishikaku AS, Rodrigues AM, Padovan AC, E Ferreira RC, Da Silva Briones MR, et al. Genetic diversity of medically important and emerging Candida species causing invasive infection. BMC Infectious Diseases. 2015;15(1):1–11.
30. Merseguel KB, Nishikaku AS, Rodrigues AM, Padovan AC, E Ferreira RC, Da Silva Briones MR, et al. Genetic diversity of medically important and emerging Candida species causing invasive infection. BMC Infectious Diseases. 2015;15(1).
31. Costa C, Ribeiro J, Miranda IM, Silva-Dias A, Cavalheiro M, Costa-de-Oliveira S, et al. Clotrimazole drug resistance in Candida glabrata clinical isolates correlates with increased expression of the drug: H+antiporters CgAqr1, CgTpo1_1, CgTpo3, and CgQdr2. Frontiers in Microbiology. 2016;7(APR):1–11.
32. Souza MN, Ortiz SO, Mello MM, Oliveira F de M, Severo LC, Goebel CS. Comparison between four usual methods of identification of Candidaspecies. Revista do Instituto de Medicina Tropical de São Paulo. 2015;57(4):281–7.
33. Seow YX, Yeo CR, Chung HL, Yuk HG. Plant Essential Oils as Active Antimicrobial Agents. Critical Reviews in Food Science and Nutrition. 2014;54(5):625–44.
34. Brandt ME, Lockhart SR. Recent taxonomic developments with Candidaand other opportunistic yeasts. Current Fungal Infection Reports. 2012;6(3):170–7.
35. Jan A, Bashir G, Qadir R, Fomda BA, Hakak AY. Section : Microbiology Modified Germ Tube Test : A Rapid Test for Differentiation of Candida albicans from Candida Dubliniensis Section : Microbiology. 2018;5(3):15–7.
36. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews. 2012;36(2):288–305.
37. Mirhendi H, Bruun B, Schønheyder HC, Christensen JJ, Fuursted K, Gahrn-Hansen B, et al. Differentiation of Candida glabrata, C. nivariensis and C. bracarensis based on fragment length polymorphism of ITS1 and ITS2 and restriction fragment length polymorphism of ITS and D1/D2 regions in rDNA. European Journal of Clinical Microbiology and Infectious Diseases. 2011;30(11):1409–16.
38. Nabili M, Ashrafi M, Janbabaie G, Hedayati MT, Ali-Moghaddam K, Shokohi T. Quantification and optimization of Candida albicans DNA in blood samples using Real- Time PCR. Reports of biochemistry & molecular biology. 2013;2(1):42–427.
39. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet Infectious Diseases [Internet]. 2017;17(12):e383–92. Available from: http://dx.doi.org/10.1016/S1473-3099(17)30316-X
40. Delavy M, Dos Santos AR, Heiman CM, Coste AT. Investigating Antifungal Susceptibility in Candida Species With MALDI-TOF MS-Based Assays. Frontiers in cellular and infection microbiology. 2019;9(February):19.
41. Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Berrio I, Perlin DS. Rapid and accurate molecular identification of the emerging multidrug-resistant pathogen Candidaauris. Journal of Clinical Microbiology. 2017;55(8).
42. She RC, Bender JM. Advances in Rapid Molecular Blood Culture Diagnostics: Healthcare Impact, Laboratory Implications, and Multiplex Technologies. The Journal of Applied Laboratory Medicine. 2019;3(4):617–30.
43. Norimatsu Y, Morii D, Kogure A, Hamanaka T, Kuwano Y, Yokozawa T, et al. A case of breakthrough Candida parapsilosis fungemia during micafungin therapy for a Candida glabrata bloodstream infection. Medical Mycology Case Reports [Internet]. 2017;16(March):1–3. Available from: http://dx.doi.org/10.1016/j.mmcr.2017.03.002
44. Dudiuk C, Morales-López SE, Podesta V, Macedo D, Leonardelli F, Vitale RG, et al. PCR multiplex diseñada para diferenciar las especies del complejo Candida glabrata. Revista Iberoamericana de Micologia [Internet]. 2017;34(1):43–5. Available from: http://dx.doi.org/10.1016/j.riam.2016.04.007
45. Oberoi JK, Wattal C, Goel N, Raveendran R, Datta S, Prasad K. Non-albicans candida species in blood stream infections in a tertiary care hospital at New Delhi, India. Indian Journal of Medical Research. 2012;136(6):997–1003.
46. Kim M, Shin JH, Sung H, Lee K, Kim E, Ryoo N, et al. Candida haemulonii and Closely Related Species at 5 University Hospitals in Korea: Identification, Antifungal Susceptibility, and Clinical Features . Clinical Infectious Diseases. 2009;48(6):e57–61.
47. Cretella D, Barber KE, King ST, Stover KR. Comparison of susceptibility patterns using commercially available susceptibility testing methods performed on prevalent Candida spp. Journal of Medical Microbiology. 2016;65(12):1445–51.
48. Ramani R, Gromadzki S, Pincus DH, Salkin IRAF. Efficacy of API 20C and ID 32C Systems for Identification of Common and Efficacy of API 20C and ID 32C Systems for Identification of Common and Rare Clinical Yeast Isolates. 2014;(June).
49. Lee WG, Shin JH, Uh Y, Kang MG, Kim SH, Park KH, et al. First three reported cases of nosocomial fungemia caused by Candida auris. Journal of Clinical Microbiology. 2011;49(9):3139–42.
50. Chatterjee S, Alampalli SV, Nageshan RK, Chettiar ST, Joshi S, Tatu US. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics [Internet]. 2015;16(1):1–16. Available from: http://dx.doi.org/10.1186/s12864-015-1863-z
51. Mandviwala T, Shinde R, Kalra A, Sobel JD, Akins RA. High-throughput identification and quantification of Candida species using high resolution derivative melt analysis of panfungal amplicons. Journal of Molecular Diagnostics. 2010;12(1):91–101.
52. Arnaud R, Dionysios N, Alix CT, Stephan H, Alain B, Bruno G, et al. First case of candida auris in Switzerland: Discussion about preventive strategies. Swiss Medical Weekly. 2018;148(17–18).
53. Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab on a Chip [Internet]. 2012 [cited 2018 Aug 8];12(14):2469. Available from: http://xlink.rsc.org/?DOI=c2lc40100b
54. Chang CC, Chen CC, Wei SC, Lu HH, Liang YH, Lin CW. Diagnostic devices for isothermal nucleic acid amplification. Sensors (Switzerland). 2012;12(6):8319–37.
55. Abdullahi UF, Igwenagu E, Jumli MN. Comparative Advantage of the Novel Loop- Mediated Isothermal Amplification Technique over the Conventional Polymerase Chain Reaction. International Journal of Scientific Study. 2015;3(8):172–7.
56. Wang H-Y, Kim H, Choi EH, Lee H. Performance of the Real Fungus-ID kit based on multiplex RT-PCR assay for the rapid detection and identification of Trichophyton spp. and Microsporum spp. in clinical specimens with suspected dermatophyte infection. Journal of Applied Microbiology. 2016;120(1):234–47.
57. Khodadadi H, Karimi L, Jalalizand N, Adin H, Mirhendi H. Utilization of size polymorphism in ITS1 and ITS2 regions for identification of pathogenic yeast species. Journal of Medical Microbiology. 2017;66(2):126–33.
58. Korabecna M. The variability in the fungal ribosomal DNA (ITS1, ITS2, and 5.8 S rRNA gene): its biological meaning and application in medical mycology. Communicating Current Research and Educational Topics and Trends in Applied Microbiology [Internet]. 2007;108(43):783–7. Available from: http://www.pnas.org/content/108/43/17667%5Cnhttp://www.formatex.org/microbio/pdf/pages783-787.pdf
59. Romanelli AM, Fu J, Herrera ML, Wickes BL. A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification. Mycoses. 2014;57(10):612–22.
60. Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K. Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microbial Pathogenesis. 2018.
61. Sachse K, Nat RER, Frey J. of Microbial Edited by. Methods in Molecular Biology [Internet]. 2003;216(5):235–42. Available from: http://books.google.com/books?id=kJwz98_C9GMC&pgis=1
62. Uemura N, Makimura K, Onozaki M, Otsuka Y, Shibuya Y, Yazaki H, et al. Development of a loop-mediated isothermal amplification method for diagnosing Pneumocystis pneumonia. Journal of Medical Microbiology. 2008;57(1):50–7.
63. Wagner K, Springer B, Pires VP, Keller PM. Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture. Scientific Reports. 2018;8(1):1–7.
64. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, LaFe K, Yarfitz SL, et al. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. Journal of Clinical Microbiology. 2000;38(6):2302–10.
65. Iwen PC, Hinrichs SH, Rupp ME. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Medical Mycology. 2002;40(1):87–109.
66. Angoulvant A, Guitard J, Hennequin C. Old and new pathogenic Nakaseomyces species: Epidemiology, biology, identification, pathogenicity and antifungal resistance. FEMS Yeast Research. 2016;16(2):1–13.
67. Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: Immune evasion and persistence. FEMS Yeast Research. 2015;15(5):1–12.
68. Tafoya-Ramírez MD, Padilla-Vaca F, Ramírez-Saldaña AP, Mora-Garduño JD, Rangel-Serrano Á, Vargas-Maya NI, et al. Replacing Standard Reporters from Molecular Cloning Plasmids with Chromoproteins for Positive Clone Selection. Molecules (Basel, Switzerland). 2018;23(6).
69. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution. 2013;4(10):914–9.
70. Walker JM. in Molecular Biology TM Series Editor [Internet]. Vol. 531, Life Sciences. 2009. 588 p. Available from: http://books.google.com/books?id=Ku2wPAAACAAJ
71. Sumerta IN, Kanti A. Taxonomic Approach for Species Diversity of Yeasts and Yeasts-like Fungi through D1/D2 Region of Large Subunit Ribosomal DNA Sequences. Biosaintifika: Journal of Biology & Biology Education. 2018;10(1):72–8.
72. Backx M, White PL, Barnes RA. New fungal diagnostics. British Journal of Hospital Medicine. 2014;75(5):271–6.
73. Irinyi L, Lackner M, de Hoog GS, Meyer W. DNA barcoding of fungi causing infections in humans and animals. Fungal Biology [Internet]. 2016;120(2):125–36. Available from: http://dx.doi.org/10.1016/j.funbio.2015.04.007
74. Kordalewska M, Zhao Y, Lockhart SR, Chowdhary A, Indira B, Perlin DS 2017. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida aurisJournal of Clinical Microbiology; 201755(8):2445–52.
75. Osei Sekyere J. Candida auris: A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. MicrobiologyOpen. 2018;7(4):1–29.
76. Tsay S, Kallen A, Jackson BR, Chiller TM, Vallabhaneni S. Approach to the Investigation and Management of Patients with Candida auris, an Emerging Multidrug-Resistant Yeast. Clinical Infectious Diseases. 2018;66(2).
77. Koricha AD, Han DY, Bacha K, Bai FY. Occurrence and molecular identification of wild yeasts from Jimma Zone, South West Ethiopia. Microorganisms. 2019;7(12):1–15.
78. Hanafy RA, Johnson B, Youssef NH, Elshahed MS. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environmental Microbiology. 2020;22(9):3883–908.
79. Barbedo LS, Figueiredo-Carvalho MHG, de Medeiros Muniz M, Zancopé-Oliveira RM. The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA. Memorias do Instituto Oswaldo Cruz. 2016;111(4):267–70.
80. Mohd Tap R, Lim TC, Kamarudin NA, Ginsapu SJ, Abd Razak MF, Ahmad N, et al. A Fatal Case of Candida auris and Candida tropicalis Candidemia in Neutropenic Patient. Mycopathologia. 2018;183(3):559–64.
81. Gade L, Hurst S, Balajee SA, Lockhart SR, Litvintseva AP. Detection of mucormycetes and other pathogenic fungi in formalin fixed paraffin embedded and fresh tissues using the extended region of 28S rDNA. Medical mycology. 2017;55(4):385–95.
82. Gago S, Alastruey-Izquierdo A, Marconi M, Buitrago MJ, Kerhornou A, Kersey PJ, et al. Ribosomic DNA intergenic spacer 1 region is useful when identifying Candida parapsilosis spp. complex based on high-resolution melting analysis. Medical Mycology. 2014;52(5):470–9.
83. Fischl H. Investigations into transcription and transcripts in Saccharomyces cerevisiae Investigations into transcription and transcripts in Saccharomyces cerevisiae. PhD Thesis2015;
84. Sutar R, David JK, Ganesan K, Ghosh AK, Singhi S, Chakrabarti A, et al. Comparison of ITS and IGS1 regions for strain typing of clinical and non-clinical isolates of Pichia anomala. Journal of Medical Microbiology. 2004;53(2):119–23.
85. Gálvez L, Clarkson JP, Palmero D. IGS region polymorphisms are responsible for failure of commonly used species-specific primers in Fusarium proliferatum isolates from diseased garlic. Plant Pathology, 2020(January):713–22.
86. Kasahara K, Ishikawa H, Sato S, Shimakawa Y, Watanabe K. Development of multiplex loop-mediated isothermal amplification assays to detect medically important yeasts in dairy products. FEMS Microbiology Letters. 2014;357(2):208–16.
87. Niu JH, Jian H, Guo QX, Chen CL, Wang XY, Liu Q, et al. Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology. 2012 ;61(4):809–19.
88. Xia, Zhi-Kuan et al. Significance of IGS1, ITS and D1/D2 Regions in Molecular Identification of Trichosporon species and Genotype of Trichosporon asahii in China. 2008;88(44):3145.
89. Cebeci Güler N, Tosun İ, Aydin F. The identification of Meyerozyma guilliermondii from blood cultures and surveillance samples in a university hospital in Northeast Turkey: A ten-year survey. Journal de Mycologie Medicale. 2017;27(4):506–13.
90. Hirschhäuser S, Fröhlich J. Multiplex PCR for species discrimination of Sclerotiniaceae by novel laccase introns. International Journal of Food Microbiology [Internet]. 2007 Sep;118(2):151–7. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0168160507003558
91. Nathan P. Wiederhold and Connie F. C. Gibas.From the Clinical Mycology Laboratory: New Species and Changes in Fungal Taxonomy and Nomenclature. Journal of Fungi. 2018;4(138).
92. Spanu T, Posteraro B, Fiori B, D’Inzeo T, Campoli S, Ruggeri A, et al. Direct MALDI-TOF mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: An observational study in two large microbiology laboratories. Journal of Clinical Microbiology. 2012;50(1):176–9.
93. Arendrup MC, Patterson TF. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. The Journal of infectious diseases. 2017;216(3):S445–51.
94. Prosser GA, Larrouy-Maumus G, de Carvalho LPS. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO reports [Internet]. 2014;15(6):657–69. Available from: http://embor.embopress.org/cgi/doi/10.15252/embr.201338283
95. Vatanshenassan M, Boekhout T, Meis JF, Berman J, Chowdhary A, Ben-Ami R, et al. Candida auris Identification and Rapid Antifungal Susceptibility Testing Against Echinocandins by MALDI-TOF MS. Frontiers in Cellular and Infection Microbiology [Internet]. 2019;9(February):1–9. Available from: https://www.frontiersin.org/article/10.3389/fcimb.2019.00020/full
96. Lamoth F, Clancy CJ, Tissot F, Squires K, Eggimann P, Flückiger U, et al. Performance of the T2Candida panel for the diagnosis of intra-abdominal candidiasis. Open Forum Infectious Diseases. 2020;7(3):10–2.
97. Chowdhary A, Voss A, Meis JF. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? Journal of Hospital Infection [Internet]. 2016;94(3):209–12. Available from: http://dx.doi.org/10.1016/j.jhin.2016.08.004
98. McCarty TP, Pappas PG. Invasive Candidiasis. Infectious Disease Clinics of North America [Internet]. 2016;30(1):103–24. Available from: http://dx.doi.org/10.1016/j.idc.2015.10.013
99. Zervou FN, Zacharioudakis IM, Kurpewski J, Mylonakis E. T2 magnetic resonance for fungal diagnosis. Methods in Molecular Biology. 2017;1508:305–19.












100. Bilir SP, Ferrufino CP, Pfaller MA, Munakata J. The economic impact of rapid Candida species identification by T2Candida among high-risk patients. Future Microbiology. 2015;10(7):1133–44.
101. Duncan R, Kourout M, Grigorenko E, Fisher C, Dong M. Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: Promises and pitfalls. Expert Review of Molecular Diagnostics [Internet]. 2016;16(1):83–95. Available from: http://dx.doi.org/10.1586/14737159.2016.1112272
102. Lamoth F, Lockhart SR, Berkow EL CT. Changes in the epidemiological landscape of invasive candidiasis. Journal of Antimicrobial Chemotherapy. 2018;73(June):i4–13.
103. Tang D, Chen X, Zhu C, Li Z, Xia Y, Guo X. Pooled analysis of T2Candida for rapid diagnosis of candidiasis. BMC Infectious Diseases; 2019;1–8.
104. Falces-Romero I, Cendejas-Bueno E, Laplaza-González M, Escosa-García L, Schuffelmann-Gutiérrez C, Calderón-Llopis B, et al. T2Candida® to guide antifungal and lengh of treatment of candidemia in a pediatric multivisceral transplant recipient. Medical Mycology Case Reports. 2018;21(May):66–8.
105. Iguchi S, Itakura Y, Yoshida A, Kamada K, Mizushima R, Arai Y, et al. Candida auris: A pathogen difficult to identify, treat, and eradicate and its characteristics in Japanese strains. Journal of Infection and Chemotherapy [Internet]. 2019;25(10):743–9. Available from: https://doi.org/10.1016/j.jiac.2019.05.034
Published
2021-06-21
How to Cite
Hassan, Y., Aminu, I., & Abbdullahi, S. A. (2021). CANDIDA DIAGNOSTIC PLATFORMS: ESSENTIAL IN EARLY MANAGEMENT OF CANDIDA INFECTIONS. FUDMA JOURNAL OF SCIENCES, 5(2), 59 - 71. https://doi.org/10.33003/fjs-2021-0502-522