• Hassan Abdulsalam
  • Ibrahim Nuhu
Keywords: Residential, Reliability, Flexibility, Optimization, Stirling-engine


World development increased dramatically ever since the Industrial Revolution, in particular after  second world war (WWII), which drove the rise of energy consumption. Thus, energy consumption in the World has been growing continuously in the past 50 years. Using micro Combined Heat and Power (mCHP) allows energy scheduling and demand-side management depending on different variables which will benefit users and suppliers. Different researches have been conducted due to increasing interest from researchers to increase and optimise the advantages of energy scheduling. In addition to the mCHP system, optimisation process also includes distributed energy sources (solar panels) with electricity storage. On the demand side, various devices with different load profiles which can be controlled over time can be considered. This study therefore, being a desktop based one, sought to review the energy demand-side management as it applies to the use of mCHP in residential settings.


Adam A., Fraga b., Eric S., and Brett D. J. L. (2015). Options for residential building services design using fuel cell based microchip and potential foe heat integration, Applied Energy,1138, pp.685-94.

Alanne, K. and Saari, A. (2004). Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making, Renewable and sustainable Energy Reviews, pp.4001-31.

Alexandros, A., Fraga b. E. and Bretta, D. J. (2013). Modelling and Optimization in terms of CO2 emissions of a solid oxide fuel cell based micro-CHP system in a four-bedroom house in London, Energy Procedia 42, pp.201-9.

Ander A. A. D. (2016). Energy production and consumption scheduling in smart buildings, MSc. Thesis, Cranfield University, UK

Andreasen, S. J. and Kaer, S. K. (2007). 400W High temperature PEM fuel cell stack test, Electrochemical Society, 5, pp.197-207.

Atzeni, I., Ordonez, L. G., Scutari, G., Palomar, D. P. and Fonollosa, J. R. (2012).Demand-Side Management via Distributed Energy Generation and Storage Optimization, IEEE Transactions on Smart Grid, 4(2), pp. 1–11. doi: 10.1109/TSG.2012.2206060.

Barelli, L., Bidini, G., Gallorini, F. and Ottaviano A. (2012). Dynamic analysis of PEMFC-based CHP systems for domestic application, Applied Energy, 91 pp.13-28.

Bianchi, M., Spina P. R., Tomassetti, G. and Ferrero E. L. (2009). Tecnologie innovative ed efficienti nei sistemi di generazione in assetto co-trigenerativo e nei sistemi integrati con unita a pompa di calore nelle application, industriali e diel terziario, Report, RSE/2009/18 [in Italian]: (

Bernotat, K. and Sandberg, T. (2004). Biomass Fired small-scale CHP in Sweden and the Baltic State: a case study on the potential of clustered dwellings, Biomass and Bioenergy, 27 pp.521-30.

Bianchi, M., De pascale A., and Spina P. (2012). Guidelines for residential micro-CHP systems design, Applied Energy, 97 pp.673-85.

Caresana, F., Brandoni, C., Feliciotti, P. and Bartolini, C. M. (2011). Energy and economic analysis of an ICE-based variable speed-operated microgenerator, AppliedEnergy pp.0306-2619 2011; 88(3) pp. 659-71.

D’Accacia, D. M., Sasso, M., Sibilio, S. and Vanoli, L. (2003). Micro combined heat and power in residential and light commercial applications, Applied Thermal Engineering, 23 pp.1247-59.

Dong, L. and Riffat, S. (2009). Development of small-scale and micro-scale biomass-fuelled CHP system – a literature review, Applied Thermal Engineering 29 pp.2119-26.Energy.102, pp.1522-1534.Available at: (Accessed: 2012.09.015)

Finn, P. and Fitzpatrick, C. (2014). Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing, Applied Energy. Elsevier Ltd, 113, pp. 11–21. doi: 10.1016/j.apenergy.2013.07.003.

Gelazanskas, L. and Gamage, K. A. A. (2014). Demand side management in smart grid: A review and proposals for future direction, Sustainable Cities and Society. Elsevier B.V., 11, pp. 22–30. doi: 10.1016/j.scs.2013.11.001.

Gomez, J. R. (2015). Operational planning of a network of combined heat and power units under uncertainty, MSc. Energy System and Thermal Process, Cranfield University, Bedfordshire United Kingdom.

International Energy Agency (2011). Energy Efficiency Policy Recommendations

Juntunen, J.K. and Hyysalo, S. (2015). Renewable micro-generation of heat and electricity – review on common and missing socio-technical configurations, Renewable and sustainable Energy Reviews, 49, pp.857-70.

Kopanos G. M., Georgiadis, M. C. and Pistikopoulos, E. N. (2013). Energy production planning of a network of micro combined heat and power generators, Applied

Maryam, M. M., Barat, G., Gholamhassan, N. and Reza, J. G. (2013) ‘Micro combined heat and power (mCHP) technologies and applications,’ Renewable and sustainable energy reviews, 28, pp. 510-524.

Kyriakarakos, G., Piromalis, D. D., Dounis, A. I., Arvanitis, K. G. and Papadakis, G. (2013). Intelligent demand side energy management system for autonomous polygeneration microgrids, Applied Energy. Elsevier Ltd, 103, pp. 39–51. doi: 10.1016/j.apenergy.2012.10.011.

Logenthiran, T., Srinivasan, D. and Shun, T. Z. (2012). Demand side management in the smart grid using heuristic optimization, IEEE Transactions on Smart Grid, 3(3), pp. 1244–1252. doi: 10.1109/TSG.2012.2195686.

Malone, K. (2010). Electrical Load Management, Physics 240. Stanford University. Available at: (Accessed: 10 April 2017).

Maxim, A. (2014). Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis, Energy Policy, 65, pp. 284 – 297.

Meybodi, M. A. and Behnia, M. (2011). Impact of carbon tax on internal combustion engine size selection in a medium scale CHP system, Applied Energy 88, pp.5153-63.

Mikalsen, R., Wang Y. D. and Roskilly, A. P. (2009). A comparison of millerand otto cycle natural gas engines for small scale CHP applications, Applied Energy pp.0306-2619 2009;86(6) pp.922-7.

Palensky, P. and Dietrich, D. (2011). Demand side management: Demand response, intelligent energy systems, and smart loads, IEEE Transactions on Industrial Informatics, 7(3), pp. 381–388. doi: 10.1109/TII.2011.2158841.

Parente, A., Galletti, C., Riccard, J., Schiavetti, M. and Tognotti, L. (2012). Experimental and numerical investigation of a micro-CHP flameless unit, Applied Energy, 89(1), pp.203-14.

Pirlogea, C. and Cicea, C. (2012). Economic perspective of the energy consumption and economic growth relation in the European Union, Renew. Sustain. Energy Rev, 16, pp.5718 – 5726.

Samadi, P., Mohsenian-Rad, H., Schober, R. and Wong, V. W. S. (2012). Advanced demand side management for the future smart grid using mechanism design, IEEE Transactions on Smart Grid, 3(3), pp. 1170–1180. doi: 10.1109/TSG.2012.2203341.

Santoyo-Castelazo, E. and Azapagic, A. (2014). Sustainability assessment of energy systems: integrating environmental, economic and social aspects, J. Clean. Production, 80, pp.119 – 138.

Sebastein, D., and Sylvian, Q., Ludovic, G. and Lemort V. (2013). Experimental Study on an open drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R234 fa as working fluid, Energy, 55(15), pp.173-83.

Shaneb, O. A., Coates G. and Taylor P. C. (2011). Sizing of residential mCHP systems, Energy and Buildings, 43 pp.1991-2001.

Strabac, G. (2008). Demand side management: Benefits and challenges, Energy Policy, 36(12), pp. 4419–4426. doi: 10.1016/j.enpol.2008.09.030.

Walker, G. and Cass, N. (2016), Carbon reduction, ‘the public’ and renewable energy: engaging with socio-technical configurations, Area, 39(4), pp.458-469.

Wang, Y., Chen, K. S., Mishler, J., Chan, S. C. and Cordobes, X. A. (2011). A review of polymer electrolyte membrane fuel cell: technology, applications, and needs on fundamental research, Applied Energy, 88, pp.981-207.

How to Cite