DERIVATION AND IMPLEMENTATION OF A THREE-STEP HYBRID BLOCK ALGORITHM (TSHBA) FOR DIRECT SOLUTION OF LINEAR AND NONLINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

Authors

  • B. G. Ogunware
  • O. E. Abolarin
  • A. F. Adebisi
  • S. O. Ayinde

DOI:

https://doi.org/10.33003/fjs-2020-0404-505

Keywords:

Power Series, Block method, Implicit, Interpolation and Collocation, Linear and Non-linear Ordinary Differential Equations (ODEs)

Abstract

The development and application of an implicit hybrid block method for the direct solution of second order ordinary differential equations with given initial conditions is shown in this research. The derivation of the three-step scheme was done through collocation and interpolation of power series approximation to give a continuous linear multistep method. The evaluation of the continuous method at the grid and off grid points formed the discrete block method. The basic properties of the method such as order, error constant, zero stability, consistency and convergence were properly examined. The new block method produced more accurate results when compared with similar works carried out by existing authors on the solution of linear and non-linear second order ordinary differential equations

References

Abu-Ibrahim, B., and Suzuki, Y. (2002). Calculation of Nucleus-Nucleus Cross sections at Intermediate Energies Using Glauber Theory. Nuclear physics A 706 (2002) 111-122.

Adamu, I.D. (2013).Calculation of Momentum Distributions of 7Be Fragment From 8B + 12C Reaction Using The Glauber Theory. IJRRAS 17(1), 116.

Adamu, I.D. and Sa'adu I. (2018). Neutron Removal Cross-Section from Elastic and Inelastic Breakup Processes of 11Be +12C 12C+10Be+1n Reaction System. Bayero Journal of Physics and Mathematical Science 9, 225-230.

Ahmad S., Chauhan D., Usman A., A. and Khan Z., A. (2015). Neon -12C reaction cross section at 240 MeV/nucleon. Proceedings of the DAE-BRNS Symp. on Nucl. Phys. 60 (2015) 454-456

Ahmad S., Chauhan D., Usman A., A. and Khan Z., A. (2016). Study of the Neon Interaction Cross Section Using the Glauber Model. Eur. Phys. J. A 52: 128, DOI 10.1140/epja/i2016-16128-8

Al-Khalili, J. (2004). An Introduction to Halo Nuclei, Lecture Notes on Physics. Springer-Verlag Berlin Heidelberg. 651, (77–112), 89–104.

Al-Khalili, J., and Nunes, F. (2003). Reaction Models to Probe The Structure of Light Exotic Nuclei. Journal of Physics. G: Nucl. Part. Phys. 29, (R89–R132), 93–98.

Bertsch, S. M. A. and G. F. (1995). Halo Nuclei. Journal of American Physical Society. 1-2.

Descouvemont P. (1999). Microscopic Cluster Study of the 32Ne and 31Ne Nuclei. Nuclear Physics A 655 (1999) 440-449

El-Din, I. M. A. T., and Hassan, S. S. A. (2010). Study of Proton-Nucleus Total Reaction Cross Section at 30 ≤ E P ≤ 2200 Mev Using Relativistic Mean Field Densities. Journal of Nuclear and Radiation Physics, Vol. 5, No.1, 40

Esha, R. (2012). Glauber Modeling of High Energy. National Institute of Science Education and Research Bhubaneswar. Pp.1–2.

Fulmante, B. M., and Umashankar, S. (2013). Studies On Different Halo Nuclei Models. Internatonal Journal of Current Reseach and Academic Review 2(3), Pp.169-173.

Horiuchi W., Suzuki Y., Capel P. and Baye D. (2010). Probing the Weakly-Bound Neutron Orbit of 31Ne With Total Reaction and One-Neutron Removal Cross Sections. Phys. Rev. C 18.024606.

Juhee H., Bertulani C. A.and Kruppa A., T. (2017) Neutron removal from the deformed halo nucleus 31Ne, Journal of Physical Review C 96, 064603

Miller, M. L., Reygers, K., Sanders, S. J., and Steinberg, P. (2007). Glauber Modeling in High Energy Nuclear Collisions. Annual Review Nuclear and particle

Minomo K Sumi T., Kimura M., Ogata K., Yoshifumi R. S, and Yahiro M. (2012). Determination of the Structure of 31Ne by a Fully Microscopic Framework. Physical Review Letters 108, 052503, 1-5

Nakamura T., Kobayashi N., Kondo Y., Satou Y., Aoi N., Baba H., Deguchi S., Fukuda N., Gibelin J., Inabe N., Ishihara M., Kameda D., Kawada Y., Kubo T., Kusaka K., Mengoni A., Motobayashi T., Ohnishi T., Ohtake M., Orr N. A., Otsu H., Otsuka K , Saito A., Sakurai H., Shimoura S., Sumikama T., Takeda H., Takeshita E., Takechi M., Takeuchi S., Tanaka K., Tanaka K. N., Tanaka N., Togano Y., Utsuno Y., Yoneda K., Yoshida A., and Yoshida K. (2009). Halo Structure of the Island of Inversion Nucleus 31Ne, Journal of Physical Review Letter 103, 262501-4

Ogawa, Y., Suzuki, Y. and Tanihata, I. (2003). Cross Section Calculations In Glauber Model: I. Core Plus One-Nucleon Case, 151,377. Doi:10.1016/S0010-4655(02)00734-81.

Ozawa, A., Suzuki, T., and Tanihata, I. (2001). Nuclear Size and Related Topics. Nuclear Physics A69340. Pp.32-62.

Sawhney, G., Sharma, M. K., & Gupta, R. K. (2014). Neutron-halo structure of light nuclei studied with effects of deformations, 055101, 2–3. doi:10.1088/0954-3899/41/5/055101

Sharma, M. K., Panda, R. N., Sharma, M. K., & Patra, S. K. (2013). Reaction and structure effects of light mass nuclei using Glauber model with relativistic and non relativistic effective interaction densities, APS Journal 8–9.

Sharma, M. K., Sharma, M. K., & Patra, S. K. (2013). Reaction dynamics for some halo nuclear systems using Glauber model with relativistic mean field densities. APS Journal 58, 461.

Shukla, A., Sharma, B. K., Chandra, R., Arumugam, P., & Patra, S. K. (2014). Nuclear reaction studies of unstable nuclei using relativistic mean field formalisms in conjunction with Glauber model, 6.

Tanihata, I. (1996). Neutron halo nuclei, Journal of Physisc G, Nucl.Part.Phys. 22, 157-198.

Yahiro, M., Ogata, K., Matsumoto, T., & Minomo, K. (2012). The continuum discretized coupled-channels, 206, 1–44.

Published

2021-06-14

How to Cite

Ogunware, B. G., Abolarin, O. E., Adebisi, A. F., & Ayinde, S. O. (2021). DERIVATION AND IMPLEMENTATION OF A THREE-STEP HYBRID BLOCK ALGORITHM (TSHBA) FOR DIRECT SOLUTION OF LINEAR AND NONLINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS. FUDMA JOURNAL OF SCIENCES, 4(4), 477 - 483. https://doi.org/10.33003/fjs-2020-0404-505