SOLVENT EFFECTS ON THE ELECTRONIC STRUCTURE AND NON-LINEAR OPTICAL PROPERTIES OF PYRENE AND SOME OF ITS DERIVATIVES BASED ON DENSITY FUNCTIONAL THEORY

Authors

  • A. S Gidado Bayero University Kano
  • L. S. Taura
  • A. Musa

DOI:

https://doi.org/10.33003/fjs-2020-0404-482

Keywords:

Pyrene, DFT, Guassian 09, solvents and hyperpolarizability

Abstract

Pyrene (C16H10) is an organic semiconductor which has wide applications in the field of organic electronics suitable for the development of organic light emitting diodes (OLED) and organic photovoltaic cells (OPV). In this work, Density Functional Theory (DFT) using Becke’s three and Lee Yang Parr (B3LYP) functional with basis set 6-311++G(d, p) implemented in Gaussian 03 package was  used to compute total energy, bond parameters, HOMO-LUMO energy gap, electron affinity, ionization potential, chemical reactivity descriptors, dipole moment, isotropic polarizability (α), anisotropy of polarizability ( Δ∝) total first order hyper-polarizability () and second order hyperpolarizability (). The molecules used are pyrene, 1-chloropyrene and 4-chloropyrene  in gas phase and in five different solvents: benzene, chloroform, acetone, DMSO and water. The results obtained show that solvents and chlorination actually influenced the properties of the molecules. The isolated pyrene in acetone has the largest value of HOMO-LUMO energy gap of and is a bit closer to a previously reported experimental value of  and hence is the most stable. Thus, the pyrene molecule has more kinetic stability and can be described as low reactive molecule. The calculated dipole moments are in the order of 4-chloropyrene (1.7645 D) < 1-chloropyrene (1.9663 D) in gas phase. The anisotropy of polarizability ( for pyrene and its derivatives were found to increase with increasing polarity of the solvents.  In a nutshell, the molecules will be promising for organic optoelectronic devices based on their computed properties as reported by this work

References

Abdulaziz1 H., Gidado A.S, Musa A. and Lawal A."Electronic Structure and Non-Linear Optical Properties of Neutral and Ionic Pyrene and Its Derivatives Based on Density Functional Theory" JMSRR, 2(3): 1-13, 2019; Article no.JMSRR.45683

Amel Bendjeddou, Tahar Abbaz, Abdelkrim Gouasmia and Didier Villemin "Quantum Chemical Studies on Molecular Structure and Reactivity Descriptors of some P-Nitrophenyl Tetrathiafulvalenes by Density Functional Theory (DFT)" Acta Chim. Pharm. Indica: 6(2), 2016, 32-44

Basim Abdullattif Ghalib, Ghaleb A. Al-Dahash, Ghaidaa A.Hafed Jaber, H.I. Abbood "Study of the Electronic and Spectroscopic Properties for Pyrene: B3LYP / DFT Calculations" Australian Journal of Basic and Applied Sciences, 8(16) 2014, Pages: 138-148

Belghiti, N, BennaniM, M. Hamidi, Bouzzine S.M and Bouachrine M. "New compounds based on anthracene as a good candidate for organic dye-sensitized solar cells: Theoretical investigations" African Journal of Pure and Applied Chemistry Vol. 6(14), pp. 164-172, (2012) DOI: 10.5897/AJPAC12.021

Bhawani Datt Joshi "Chemical Reactivity, Dipole Moment and First Hyperpolarizability of Aristolochic Acid I" JIST, 21 (1), 1-9 (2016) ISSN: 2469-9062 (p), 2467-9240(e)

Chercka, D., Yoo, S. J., Baumgarten, M., Kim, J. J. & Müllen, K. "Pyrene based materials for exceptionally deep blue OLEDs" J. Mater. Chem. C 2, 9083–9086 (2014).

Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A. (2004) "Gaussian 03, Revision" B.03. Gaussian, Inc., Wallingford CT.

Chandrakumar K. R. S. and Sourav Pal. "The Concept of Density Functional Theory Based Descriptors and its Relation with the Reactivity of Molecular Systems: A Semi-Quantitative Study" Int. J. Mol. Sci. (2002), 3, 324-337

Clodoaldo Valverde, Sizelizio Alves de Lima e Castro, Gabriela Rodrigues Vaz, Jorge Luiz de Almeida Ferreira, Basilio Baseia,and Francisco A. P. Osorio " Third-Order Nonlinear Optical Properties of a Carboxylic Acid Derivative" Acta Chim. Slov. 2018, 65, 739–74 DOI: 10.17344/acsi.2018.4462

Ehab AlShamaileh. "DFT study of monochlorinated pyrene compounds" Journal of Computational Chemistry 2014; 2(43-49) http://dx.doi.org/10.4236/cc.2014.23006

Facchetti, A. "π-Conjugated polymers for organic electronics and photovoltaic cell applications" Chem. Mater. 23, 733–758 (2011).

Forrest, S. R. & Thompson, M. E. "Introduction: Organic electronics and optoelectronics" Chemical Reviews 107, 923–925 (2007).

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani,G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., O’Boyle N. M., Tenderholt A. L. and Langer K. M., "cclib: A library for package-independent computational chemistry algorithms", Journal of Computational Chemistry, 29, 839–845, (2008). DOI: 10.1002/jcc.20823

Fuks-Janczarek I., Luc J., Sahraoui B., Dumur F.,Hudhomme P., Berdowski J., Kityk I.V,"Third order nonlinear optical figure of merits for conjugated TTTF-quinone molecules" J. Phys. Chem. B 109 (2005) 10179-10183

Gidado, A.S., Abubakar Maigari and Galadanci, G.S.M. "Geometry optimization and Vibrational Frequencies of Tetracene Molecule in Gas Phase and in Methanol Based On Density Funtional Theory and Restricted Hartree-Fock" Bayero Journal of Pure and Applied Science (2017) 10(1): 18-31 http://dx.doi.org/10.4314/bajopas.v10i1.3

Gupta V P. "Density functional theory (DFT) and time-dependent DFT (TDDFT): Principles and Applications of Quantum Chemistry" 2016. Available: https:||doi.org/10.1016/B978-0- 12-803478-1.00005-4

Hamit Alyar "A Review on Nonlinear Optical Properties of Donor-Acceptor Derivatives of Naphthalene and Azanaphthalene" Rev. Adv. Mater.Sci 34(2013) 79-87.

Ismail R. A. , Suleiman A. B. , Gidado A. S , Lawan A and Musa A. "Investigation of the Effects of Solvents on the Structural, Electronic and Thermodynamic Properties of Rosiglitazone Based on Density Functional Theory" 21(2): 1-18, 2019; Article no.PSIJ.47646

Janaki C, Sailatha E, Gunasekaran S, Kumar GRR. Molecular structure and spectroscopic characterization of Metformin with experimental techniques and DFT quantum chemical calculations, Int J Techno Chem. 2016;2(2):91-104.

Jagannathan.L and Meenakshi.S. "FT-IR, FT-Raman and UV-vis spectra and quantum chemical investigation of carvedilol, Mol. Simul., Vol 35 (2009) pp 1-8

Kosar.B and Albayrak.C. "Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl] phenol", Spectrochim. Acta A., Vol 87 (2011) pp 160-167.

Kuroda, H., Yoshihara, K. & Akamatu, H. "The Spectral Dependence of the Photoconduction and the Mobility of the Charge Carrier in a Single Crystal of the Pyrene-Tetracyanoethylene Complex". Bull. Chem. Soc. Jpn. 36, 1365–1366 (1963).

Li An "Effect of Internal BN Substitution on Electronic Properties of Pyrene Derivative"IOP Conf. Series: Materials Science and Engineering 689 (2019) doi:10.1088/1757-899X/689/1/012009

Maria Ashok Kumar C., Keerthana B. and Madhavan J. "Molecular Structure, First-Order Hyperpolarizability and Homo-Lumo Studies of L - Asparaginium Picrate" IJEDR1503005 3(3) 2015 ISSN:2321-9939

Öttl S., S. Huber E., Kimeswenger S. and Probst M. "Coronene and pyrene (5, 7)-member ring defects Infrared spectra, energetics, and alternative formation pathways" A&A 568, A95 (2014) DOI: 10.1051/0004-6361/201424400

Parr, R. G. and Yang, W."Density Functional Theory of Atoms and Molecules", Oxford University Press, Oxford, 1989.

Saleh, B.A.,"Structure and vibrational spectra of mononitrated Benzo [a] pyrenes" J. Mol. Struct. Theochem, 2009 915(47).

Shaw, J. M. & Seidler, P. F. "Organic electronics: Introduction" IBM J. Res. Dev. 45, 3–9 (2001).

Somerharju, P. Pyrene-labeled lipids as tools in membrane biophysics and cell biology. Chem. Phys. Lipids 116, 57–74 (2002).

Sulaiman N.M., Taura L.S., Abdullahi Lawal, Gidado A.S and Musa A. "Solvent Effects on the Structural, Electronic, Non-Linear Optical and Thermodynamic Properties of Perylene Based on Density Functional Theory" JMSRR, 3(3): 1-13, 2019; Article no .JMSRR.50622

Vivekanand V. Gobre "Efficient modelling of linear electronic polarization in materials using atomic response functions" PhD Thesis Fritz-Haber-institut der Max-Planck-Gesellschaft Berlin-Germany 2016 pp.4-5.

Downloads

Published

2021-01-01

How to Cite

Gidado, A. S., Taura, L. S., & Musa, A. (2021). SOLVENT EFFECTS ON THE ELECTRONIC STRUCTURE AND NON-LINEAR OPTICAL PROPERTIES OF PYRENE AND SOME OF ITS DERIVATIVES BASED ON DENSITY FUNCTIONAL THEORY. FUDMA JOURNAL OF SCIENCES, 4(4), 236 - 251. https://doi.org/10.33003/fjs-2020-0404-482