GREEN SYNTHESIS OF SILVER NANOPARTICLES FROM OKRA (ABELMOSCHUS ESCULENTUS) EXTRACT AND THEIR ANTI-DIABETIC EFFICACY IN STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS

Authors

  • Theophilus Ajewole Ayomide
  • Olumide Esan Akintomiwa
  • Emmanuel Abiola Babawale
  • Oluwaseun Adegbola Samuel
  • Mary Olubode Marvellous

DOI:

https://doi.org/10.33003/fjs-2025-0912-4490

Keywords:

Silver Nanoparticles, Abelmoschus esculentus, Diabetes Mellitus, Anti-Diabetic Activity, Streptozotocin

Abstract

Diabetes mellitus is a global healthcare problem that deserves new therapies. Green synthesis of silver nanoparticles (AgNPs) from okra (Abelmoschus esculentus) pod aqueous extract is a new anti-diabetic therapy. This study synthesized and characterized okra-mediated AgNPs and evaluated their anti-diabetic activity in streptozotocin-induced diabetic Wistar rats compared to okra extract and metformin. AgNPs, synthesized by mixing okra extract with 5 mM AgNO3, were identified by UV-Vis spectroscopy (450 nm absorbance), FTIR, XRD, and TEM as spherical nanoparticles (mean 18.01 nm). Thirty-five Wistar male rats were divided into seven groups (n=5): non-diabetic control, diabetic control, and diabetic groups administered okra extract (1 mL/kg), AgNPs (0.2 mL/kg), AgNO3 (1 mL/kg), and metformin (500 mg/kg) via oral gavage for four weeks. AgNPs and okra extract also reduced fasting blood glucose (34.1% and 45.9%, respectively) and HbA1c (up to 65.1%) compared to diabetic controls (p<0.05). They also increased superoxide dismutase and glutathione while decreasing malondialdehyde, indicating amelioration of oxidative stress. AgNPs had anti-diabetic parameters comparable to metformin and hence a potential candidate that warrants further mechanistic and clinical studies for a green, potent anti-diabetic drug.

References

Adeoye, A. T., Oyagbemi, A. A., Adedapo, A. D., Omobowale, T. O., Ayodele, A. E., & Adedapo, A. A. (2017). Antidiabetic and anti-oxidant activities of the methanol leaf extract of Vernonia amygdalina in alloxan-induced diabetes in Wistar rats. Journal of Medicinal Plants for Economic Development, 1(1), a30. https://doi.org/10.4102/jomped.v1i1.30

Ali, M. H., Azad, M. A. K., Khan, K. A., Rahman, M. O., Chakma, U., & Kumer, A. (2023). Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS Omega, 8(31), 28133–28142. https://doi.org/10.1021/acsomega.3c01261

Antar, S. A., Ashour, N. A., Sharaky, M., Khattab, M., Zaid, R. T., Roh, E. J., Elkamhawy, A., & Al-Karmalawy, A. A. (2023). Diabetes mellitus: Classification, mediators, and complications: A gate to identify potential targets for the development of new effective treatments. Biomedicine & Pharmacotherapy, 168, 115734. https://doi.org/10.1016/j.biopha.2023.115734

Bahreini, N., Saghafi-Asl, M., Nikpayam, O., Safaei, E., Sadra, V., Fakhr, L., Beyrampour-Basmenj, H., Asgharian, P., & Asghari-Jafarabadi, M. (2024). Effects of dried okra extract on lipid profile, renal function and some RAGE-related inflammatory genes expression in patients with diabetic nephropathy: A randomized controlled trial. Complementary Therapies in Medicine, 81, 103027. https://doi.org/10.1016/j.ctim.2024.103027

Balčiūnaitienė, A., Liaudanskas, M., Puzerytė, V., Viškelis, J., Janulis, V., Viškelis, P., Griškonis, E., & Jankauskaitė, V. (2022). Eucalyptus globulus and Salvia officinalis extracts mediated green synthesis of silver nanoparticles and their application as an antioxidant and antimicrobial agent. Plants, 11(8), 1085. https://doi.org/10.3390/plants11081085

Choudhury, A. A., & Devi Rajeswari, V. (2021). Gestational diabetes mellitus: A metabolic and reproductive disorder. Biomedicine & Pharmacotherapy, 143, 112183. https://doi.org/10.1016/j.biopha.2021.112183

Deen, G. R., Hannan, F. A., Henari, F., & Akhtar, S. (2022). Effects of different parts of the okra plant (Abelmoschus esculentus) on the phytosynthesis of silver nanoparticles: Evaluation of synthesis conditions, nonlinear optical and antibacterial properties. Nanomaterials, 12(23), 4174. https://doi.org/10.3390/nano12234174

Devanesan, S., & AlSalhi, M. S. (2021). Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. International Journal of Nanomedicine, 16, 3343–3356. https://doi.org/10.2147/IJN.S307676

Elkhalifa, A. E. O., Alshammari, E., Adnan, M., Alcantara, J. C., Awadelkareem, A. M., Eltoum, N. E., Mehmood, K., Panda, B. P., & Ashraf, S. A. (2021). Okra (Abelmoschus esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules, 26(3), 696. https://doi.org/10.3390/molecules26030696

Fahim, M., Shahzaib, A., Nishat, N., Jahan, A., Bhat, T. A., & Inam, A. (2024b). Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open, 16, 100125. https://doi.org/10.1016/j.jciso.2024.100125

Ganguli, S., Howlader, S., Ullah, A. A., Bhuiyan, F. R., Akhi, A. A., Hasan, A., Dey, K., Islam, S., Ali, F., Chakraborty, A. K., Bhattacharjee, S., & Dey, B. K. (2023). Size controlled biosynthesis of silver nanoparticles using Ophiorrhiza mungos, Ophiorrhiza harrisiana and Ophiorrhiza rugosa aqueous leaf extract and their antimicrobial activity. Heliyon, 9(5), e16072. https://doi.org/10.1016/j.heliyon.2023.e16072

Ghasemi, A., & Jeddi, S. (2023). Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. EXCLI Journal, 22, 274–294. https://doi.org/10.17179/excli2022-5720

Hossain, M. J., Al-Mamun, M., & Islam, M. R. (2024). Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports, 7(3), e2004. https://doi.org/10.1002/hsr2.2004

Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9), e08033. https://doi.org/10.1016/j.heliyon.2021.e08033

Jangid, H., Singh, S., Kashyap, P., Singh, A., & Kumar, G. (2024). Advancing biomedical applications: An in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Frontiers in Pharmacology, 15, 1438227. https://doi.org/10.3389/fphar.2024.1438227

Kubheka, G., Adeola, A. O., Ngulube, R., Nombona, N., & Forbes, P. B. C. (2024). Magnetic hexadecylamine-graphene quantum dots-silver nanoparticle nanocomposite as adsorbents for the removal of phenanthrene and bacteria from aqueous solution. Discover Applied Sciences, 6(9). https://doi.org/10.1007/s42452-024-06147-y

Kwok, C. T., Ng, Y., Chan, H. L., & Chan, S. (2025). An overview of the current scientific evidence on the biological properties of Abelmoschus esculentus (L.) Moench (okra). Foods, 14(2), 177. https://doi.org/10.3390/foods14020177

Liu, L., Yu, C., Ahmad, S., Ri, C., & Tang, J. (2023). Preferential role of distinct phytochemicals in biosynthesis and antibacterial activity of silver nanoparticles. Journal of Environmental Management, 344, 118546. https://doi.org/10.1016/j.jenvman.2023.118546

Mahmudin, L., Suharyadi, E., Setio Utomo, A., & Abraha, K. (2015). Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications. Journal of Modern Physics, 6, 1071–1076. https://doi.org/10.4236/jmp.2015.68111

Meher, A., Tandi, A., Moharana, S., Chakroborty, S., Mohapatra, S., Mondal, A., Dey, S., & Chandra, P. (2024). Silver nanoparticle for biomedical applications: A review. Hybrid Advances, 6, 100184. https://doi.org/10.1016/j.hybadv.2024.100184

Oliveira, Y. V. S., Azevedo, M. M. R., Felsemburgh, C. A., de Souza, J., Lima, A. K. O., de Campos Braga, H., Tada, D. B., Gul, K., Nakazato, G., & Taube, P. S. (2025). Green synthesis of silver nanoparticles from cumaru (Dipteryx odorata) leaf extract. Discover Applied Science, 7, 227. https://doi.org/10.1007/s42452-025-06654-6.

Sayem, A. S. M., Arya, A., Karimian, H., Krishnasamy, N., Hasamnis, A. A., & Hossain, C. F. (2018). Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules, 23(2), 258. https://doi.org/10.3390/molecules23020258

Shahzad, N., Alzahrani, A. R., Aziz Ibrahim, I. A., Shahid, I., Alanazi, I. M., Falemban, A. H., Imam, M. T., Mohsin, N., Azlina, M. F. N., & Arulselvan, P. (2024). Therapeutic strategy of biological macromolecules-based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon, 10(2), e24207. https://doi.org/10.1016/j.heliyon.2024.e24207

Simos, Y. V., Spyrou, K., Patila, M., Karouta, N., Stamatis, H., Gournis, D., Dounousi, E., & Peschos, D. (2020). Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian Journal of Pharmaceutical Sciences, 16(1), 62–76. https://doi.org/10.1016/j.ajps.2020.05.001

Situmorang, P., Zuhra, C., Lutfia, A., Pasaribu, K. M., Hardiyanti, R., & Nugraha, A. (2025). Harnessing phytochemicals to combat diabetes: Insights into molecular pathways and therapeutic advances. Journal of Functional Foods, 128, 106799. https://doi.org/10.1016/j.jff.2025.106799

Stephen, N., Odoma, S., Salihu, T. S., Joshua, A. O., & Timothy, N. (2025). Hypoglycemic and hypolipidemic effects of Leonotis mollissima aqueous leaf extract in type 2 diabetic rats. Journal of Experimental Pharmacology, 17, 625–637. https://doi.org/10.2147/JEP.S532507

Suprapti, B., Izzah, Z., Anjani, A. G., Andarsari, M. R., Nilamsari, W. P., & Nugroho, C. W. (2023). Prevalence of medication adherence and glycemic control among patients with type 2 diabetes and influencing factors: A cross-sectional study. Global Epidemiology, 5, 100113. https://doi.org/10.1016/j.gloepi.2023.100113

Ul Haq, M. N., Shah, G. M., Gul, A., Foudah, A. I., Alqarni, M. H., Yusufoglu, H. S., Hussain, M., Alkreathy, H. M., Ullah, I., Khan, A. M., Jamil, S., Ahmed, M., & Khan, R. A. (2022). Biogenic synthesis of silver nanoparticles using Phagnalon niveum and its in vivo antidiabetic effect against alloxan-induced diabetic Wistar rats. Nanomaterials, 12(5), 830. https://doi.org/10.3390/nano12050830

Velgosova, O., Dolinská, S., Podolská, H., Mačák, L., & Čižmárová, E. (2024). Impact of plant extract phytochemicals on the synthesis of silver nanoparticles. Materials, 17(10), 2252. https://doi.org/10.3390/ma17102252

Wan Mat Khalir, W. K. A., Shameli, K., Jazayeri, S. D., Othman, N. A., Che Jusoh, N. W., & Hassan, N. M. (2020). Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Frontiers in Chemistry, 8, 620. https://doi.org/10.3389/fchem.2020.00620

Wang, J., & Wang, H. (2017). Oxidative stress in pancreatic beta cell regeneration. Oxidative Medicine and Cellular Longevity, 2017, 1930261. https://doi.org/10.1155/2017/1930261

Zahra, M., Abrahamse, H., & George, B. P. (2024). Flavonoids: Antioxidant powerhouses and their role in nanomedicine. Antioxidants, 13(8), 922. https://doi.org/10.3390/antiox13080922

TEM Images of Agnps at (A) 20 Nm, (B) 50 Nm, And (C) 100 Nm Magnifications

Downloads

Published

31-12-2025

How to Cite

Ayomide, T. A., Akintomiwa, O. E., Babawale, E. A., Samuel, O. A., & Marvellous, M. O. (2025). GREEN SYNTHESIS OF SILVER NANOPARTICLES FROM OKRA (ABELMOSCHUS ESCULENTUS) EXTRACT AND THEIR ANTI-DIABETIC EFFICACY IN STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS. FUDMA JOURNAL OF SCIENCES, 9(12), 829-836. https://doi.org/10.33003/fjs-2025-0912-4490