AN INTRODUCTION TO THE CONCEPT OF FUZZY MULTISET BITOPOLOGY

Authors

DOI:

https://doi.org/10.33003/fjs-2025-0912-4461

Keywords:

Fuzzy set, multiset, fuzzy multiset, Topology, fuzzy topology, multiset topology, fuzzy multiset topology, bitopology, multiset bitopology, Fuzzy Multiset Bitopology

Abstract

In this paper, we introduce the concept of fuzzy multiset bitopological spaces. Moreover, the notions of fuzzy submultiset of bitopological space, union, intersection and Hausdorf fuzzy multiset bitopology are studied and presented. The importance of this approach is that, the class of fuzzy multiset bitopological spaces is wider and more general than the class of classical bitopological spaces.

References

Zadeh, L. A (1965). Fuzzy Set, Information and Control. 8: 338-353.

Blizard, W. D. (1989). Multiset Theory, Notre Dame Journal of Formal Logic, 30:36-46.

Chang, C. L. (1968). Fuzzy Topological Spaces, Journal of Mathematics Analysis and Applications. 24:182-190.

Grish K. P. and John S. J. (2012). On Multiset Topologies, Theory and Applications of Mathematics and Computer Science. 2: 37-52.

Rajish, K. P and Sunil, J. J. (2020). Separation and Connectedness in Multiset Topological Space, AIMS Mathematics, 5: 2484-2499.

Hoque, M., Bhattacharya, B. and Tripathy, B. C. (2024). Connectedness and Compactness via Subspace Multiset Topologies, Proceedings of National Academic of Sciences India, 94: 335-343.

Rajish, K. P and Sunil, J. J and Smanta, S. (2022). Compactness and Subspace Multiset Topologies, Soft Computing, 26: 4115-4122.

Miyamoto, S. (2000). Fuzzy Multiset and their Generalizations, Workshop on membrane computing. Springer, Berlin, Heidelberg, 2: 225-235

Bhattacharya, B. and Hoque, M. (2023). A Novel Approach in the Light of Fuzzy Multiset Topology, National Science Academic India – section A. 93: 675-683

Kelly, J. C. (1963). Bitopological Spaces, Proceeding of the London Mathematics Society, 13: 71-89.

Omar, R. A., El-sheikh, S. A., and Rafaat, M. (2015). Multiset Bitopological Space, International Journal of Advances in Mathematics 5: 20-26.

Tella, Y. and Usman, A. (2024). Some Operators and their Closure Properties on Multiset Topological Space, Asian Research Journal of Mathematics, 20: 19-32.

Tella, Y. and Usman, A. (2024). Multiset Topological Space as Generalization of the Classical Topological Space via Support Set, International Journal of Mathematics and Computer Research, 12: 4226-4230.

Downloads

Published

31-12-2025

How to Cite

Dauda, H., Alkali, A. J., & Shagari, M. . S. (2025). AN INTRODUCTION TO THE CONCEPT OF FUZZY MULTISET BITOPOLOGY. FUDMA JOURNAL OF SCIENCES, 9(12), 698-701. https://doi.org/10.33003/fjs-2025-0912-4461