STATISTICAL PROPERTIES OF LOMAX-INVERSE EXPONENTIAL DISTRIBUTION AND APPLICATIONS TO REAL LIFE DATA
Keywords:
Lomax-G family, Lomax-Inverse Exponential, Generalization, Maximum Likelihood Estimation, PropertiesAbstract
This paper proposes a Lomax-inverse exponential distribution as an improvement on the inverse exponential distribution in the form of Lomax-inverse Exponential using the Lomax generator (Lomax-G family) with two extra parameters to generalize any continuous distribution (CDF). The probability density function (PDF) and cumulative distribution function (CDF) of the Lomax-inverse exponential distribution are defined. Some basic properties of the new distribution are derived and extensively studied. The unknown parameters estimation of the distribution is done by method of maximum likelihood estimation. Three real-life datasets are used to assess the performance of the proposed probability distribution in comparison with some other generalizations of Lomax distribution. It is observed that Lomax-inverse exponential distribution is more robust than the competing distributions, inverse exponential and Lomax distributions. This is an evident that the Lomax generator is a good probability model.
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences