MONOTONICITY OF HAZARD RATE FUNCTION WITH APPLICATION TO THE NEW MIXTURE EXPONENTIAL-GAMMA (NMEG) DISTRIBUTION

Authors

  • Lawrence C. NZEI
  • Jacob C. EHIWARIO
  • Joseph T. EGHGHWERIDO

DOI:

https://doi.org/10.33003/fjs-2026-1001-4337

Keywords:

Monotonicity, Survival Probability Model, Monotone Hazard Rate, Bathtub Hazard Rate

Abstract

In this study, a review of the monotonicity of the hazard rate function of a probability distribution for survival models is presented. The conditions for monotonicity were discussed. The concept of monotonicity can be analytically derived and tested using the knowledge of elementary differential calculus. The New Mixture of Exponential-Gamma distribution was considered as a case study to illustrate the usefulness of these conditions on survival data analysis.

Author Biographies

  • Lawrence C. NZEI

    Lecturer, Department of Statistics 

  • Jacob C. EHIWARIO

    Senior Lecturer, Department of Mathematics and Statistics

  • Joseph T. EGHGHWERIDO

    Senior Lecturer, Department of Statistics

References

REFERENCES

Aarsat, M. V., (1987). How to identify a Bathtub Hazard rate. IEEE Transactions on Reliability, 36(1), 106-108.

Abd El-Monsef, M. M. E., Hassanein, W. A. and Kilany, N. M. (2017). Erlang–Lindley distribution, Communications in Statistics - Theory and Methods, 46(19), 9494-9506,

DOI: 10.1080/03610926.2016.1212069

Alam, F. M. A., & Almalki, A. M. (2021). The hazard rate function of the logistic Birnbaum-Saunders distribution: Behavior, associated inference, and application. Journal of King Saud University - Science, 33(7), 101580. https://doi.org/10.1016/j.jksus.2021.101580

Barlow, R. E., Marshall, A. W. and Prochan, F. (1963). Properties of Probability Distribution with Monotone Hazard Rate, The Annals of Mathematical Statistics, 34(2), 375-389.

Bean, M. A (2001). Probability: The Science of Uncertainty with Application to Investment, Insurance and Engineering, Vol. 6, American Mathematical Society, Bostom, Mass.

Cleve, M. (2008). An Introduction to Survival Analysis Using Stata. Stata Press, Tex.

Ehiwario, J.C.; Igabari, J. N, and Ezimadu, P. E. (2023). The Alpha Power Topp-Leone Distributions: Properties, Simulation and Applications, Journal of Applied Mathematics and Physics, 11, 316-331. https://doi.org/10.4236/jamp.2023.111018.

Ekhosuehi, N., Nzei, L. C. and Opone, F. C. (2020). A New Mixture of Exponential-Gamma Distribution, Gazi University Journal of Science, 33(2): 548-564 DOI:10.35378/gujs.475102.

Glaser, R. E. (1980). Bathtub and Related Failure Rate Characterizations, Journal of the American Statistical Association, 75(371): 667-672

Hornik, K. (2024), Two Monotonicity Results for Beta Distribution Functions. Entropy, 26, 938. https://doi.org/10.3390/e26110938

Kiefer, N.M. (1988) Economic Duration Data and Hazard Functions. Journal of Economic Literature, 26: 646-679.

Lawless, J. F. (2003). Statistical Models and Methods for lifetime data. Wiley, New York.

Lee, E. T. (1992). “Statistical Methods for Survival Data Analysis (2nd Edition)”, John Wiley and Sons Inc., New York, USA.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Letternmaier, D. P., Stoufler, R. J., Dettinger, M. D. and Krysanova, V. (2015). On Critiques of “Stationarity is Dead: Whither Water Management?”. Water Resource Research. 51(9): 7785 – 7789, doi: 10.1002/2015 WR017408.

Najafi, M., and Morassaei, A. (2025). On completely monotonic functions. arXiv. ttps://doi.org/10.48550/arxiv.2505.23767

Nzei and Ekhosuehi (2017). Lindley Exponentiated-Exponential Distribution with Application to Waiting Time Data, Transactions of the Nigerian Association of Mathematical Physics, 5: 153-160.

Read, L.K. and Vogel, R.M. (2016). Hazard Function Analysis for Flood Planning under Nonstationarity, Water Resources Research, 52(5): 4116-4131. https://doi.org/10.1002/2015WR018370

Ristic, M. M. and Balakrishnan, N. (2012). The Gamma Exponentiated Exponential distribution. Journal of Statistical Computation and Simulation, 82(8): 1191-1206.

Satsayamon S. and Winai B. (2014). “A New Family of Generalized Gamma Distribution and its Application”, Journal of Mathematical. Statistics, 10(2): 211-220.

Schulz, J. and Genest, C. (2025). Comonotonicity and countermonotonicity: Review and implications for likelihood-based estimation, Communications in Statistics - Theory and Methods, Vol. 54 (8): 2482-2505; DOI: 10.1080/03610926.2024.2363875.

Shakil1, M. M. Ahsanullah, B. M. G. Kibria (2021). Characterizations of Some Probability Distributions with Completely Monotonic Density Functions. Pakinstan Journal of statistics and Operation Research.17 (1), 51-64, DOI:http://dx.doi.org/10.18187/pjsor.v17i1.3491

Stacy, E.W. (1962). “A Generalization of the Gamma Distribution”, Annals Mathematical Statistics, 33: 1187-1192.

Thomas, E. A. C. (1971). Sufficient Conditions for Monotone Hazard Rate: An Application to Latency-Probability Curve, Journal of Mathematical Psychology, 8: 303-332.

Turkson, A.J. (2022). Perspectives on Hazard Rate Functions: Concepts; Properties; Theories; Methods; Computations; and Application to Real-Life Data. Open Access Library Journal, 9: e8275. https://doi.org/10.4236/oalib.1108275

Monotone Decreasing Function

Downloads

Published

21-01-2026

How to Cite

NZEI, L. C., EHIWARIO, J. C., & EGHWERIDO, J. T. (2026). MONOTONICITY OF HAZARD RATE FUNCTION WITH APPLICATION TO THE NEW MIXTURE EXPONENTIAL-GAMMA (NMEG) DISTRIBUTION. FUDMA JOURNAL OF SCIENCES, 10(1), 243-248. https://doi.org/10.33003/fjs-2026-1001-4337