GEOSPATIAL FLOOD RISK MAPPING AND VULNERABILITY ASSESSMENT USING GIS AND AHP IN HADEJIA RIVER BASIN, JIGAWA STATE, NIGERIA

Authors

  • Ahmed Abubakar Sule Lamido University
  • Mubarak Sani Sule Lamido University
  • Mohammad Hadi Ahmad Ahmadu Bello University image/svg+xml
  • Jibrin Gambo Binyaminu Usman Polytechnic image/svg+xml

DOI:

https://doi.org/10.33003/fjs-2025-0912-4323

Keywords:

Flood susceptibility, Flood mitigation, Flood vulnerability, Flood-prone areas, Gender, Floods

Abstract

Geographic Information System (GIS) and the Analytic Hierarchy Process (AHP) model within a multi-criteria decision analysis framework is used to map flood susceptibility in a river basin in northern Nigeria. Ten hydro-geomorphological indices, elevation, slope, rainfall, land use, and soil type, were systematically analyzed for their impact on flood hazards. A comprehensive flood susceptibility map was generated by assigning weights and ranks to factors. Areas with heightened vulnerability to flooding are attributed to slope, land use patterns, and proximity to water bodies. This study emphasizes the influence of rainfall patterns, drainage density, distance from rivers, geology, soil composition, topographic wetness, stream power, land use, encroachment onto flood plains, and vegetation cover on flood susceptibility. Additionally, gender considerations in disaster response and resilience efforts are discussed, highlighting challenges in flood-prone areas and advocating for inclusive strategies to bolster community resilience. The findings are pivotal for devising flood management strategies and hold applicability to analogous flood-prone areas globally.

References

Abdulkarim, S., Abubakar Babaji, N., & Muhktar Isa, A. (2021). The relationship between humanitarian logistics management and disaster management in North-Eastern Nigeria. International Journal of Scientific & Technology Research, 10(04), 58–65. www.ijstr.org

Abdullahi, U., Sunday, I., Yadima, G., & Nur, A. (2016). Flood Frequency Analysis at Hadejia River in Hadejia – Jama ’ are River Basin , Nigeria. Civil and Environmental Research, 8(9), 124–131.

Abubakar, A. (2020). Flood in Nigeria: A review. African Journal of Sustainable Development, 10(1), 1–9.

Adams, W. M., & Thomas, D. H. L. (1996). Conservation and sustainable resource use in the Hadejia-Jama’are Valley, Nigeria. Oryx, 30(2), 131–142. https://doi.org/10.1017/s0030605300021517

Ahmed, S. D., Agodzo, S. K., Adjei, K. A., Deinmodei, M., & Ameso, V. C. (2018). Preliminary investigation of flooding problems and the occurrence of kidney disease around Hadejia-Nguru wetlands, Nigeria and the need for an ecohydrology solution. Ecohydrology and Hydrobiology, 18(2), 212–224. https://doi.org/10.1016/j.ecohyd.2017.11.005

Aitsi-Selmi, A., Egawa, S., Sasaki, H., Wannous, C., & Murray, V. (2015). The Sendai Framework for Disaster Risk Reduction: Renewing the Global Commitment to People’s Resilience, Health, and Well-being. International Journal of Disaster Risk Science, 6(2), 164–176. https://doi.org/10.1007/s13753-015-0050-9

Angela Kesiena ETUONOVBE. (2011). The Devastating Effect of Flooding in Nigeria. Hydrography and the Environment, May, 18–22. http://www.fig.net/pub/fig2011/papers/ts06j/ts06j_etuonovbe_5002.pdf

Ani, K. J., Anyika, V. O., & Mutambara, E. (2022). The impact of climate change on food and human security in Nigeria. International Journal of Climate Change Strategies and Management, 14(2), 148–167. https://doi.org/10.1108/IJCCSM-11-2020-0119

Aslam, M. (2018). Flood Management Current State, Challenges and Prospects in Pakistan: A Review. Mehran University Research Journal of Engineering and Technology, 37(2), 297–314. https://doi.org/10.22581/muet1982.1802.06

Birkholz, S., Muro, M., Jeffrey, P., & Smith, H. M. (2014). Rethinking the relationship between flood risk perception and flood management. Science of the Total Environment, 478, 12–20. https://doi.org/10.1016/j.scitotenv.2014.01.061

Borga, M., Stoffel, M., Marchi, L., Marra, F., & Jakob, M. (2014). Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. Journal of Hydrology, 518(PB), 194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022

Casanova, M. T., & Brock, M. A. (2000). How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147(2), 237–250. https://doi.org/10.1023/A:1009875226637

Chourushi, S., Lodha, P. P., & Prakash, I. (2019). A Critical Review of Hydrological Modeling Practices for Flood Management. Pramana Research Journal, 9(3), 352–363. https://www.researchgate.net/publication/332751428

Demeritt, D., & Nobert, S. (2014). Models of best practice in flood risk communication and management. Environmental Hazards, 13(4), 313–328. https://doi.org/10.1080/17477891.2014.924897

Dinis, P. A., Huvi, J., Pinto, M. C., & Carvalho, J. (2021). Disastrous flash floods triggered by moderate to minor rainfall events. Recent cases in coastal Benguela (angola). Hydrology, 8(2), 1–13. https://doi.org/10.3390/HYDROLOGY8020073

Djalante, R. (2012). Review Article: Adaptive governance and resilience: The role of multi-stakeholder platforms in disaster risk reduction. Natural Hazards and Earth System Science, 12(9), 2923–2942. https://doi.org/10.5194/nhess-12-2923-2012

Dolui, S., & Sarkar, S. (2023). Modelling landuse dynamics of ecologically sensitive peri-urban space by incorporating an ANN cellular automata-Markov model for Siliguri urban agglomeration, India. Modeling Earth Systems and Environment, 2024. https://doi.org/10.1007/s40808-023-01771-w

Douglas, I., Alam, K., Maghenda, M., Mcdonnell, Y., Mclean, L., & Campbell, J. (2008). Unjust waters: Climate change, flooding and the urban poor in Africa. Environment and Urbanization, 20(1), 187–205. https://doi.org/10.1177/0956247808089156

Dufty, N. (2008). A new approach to community flood education. Australian Journal of Emergency Management, 23(2), 4–8.

Ekpoh, I. J., & Nsa, E. (2011). Extreme Climatic Variability in North-western Nigeria: An Analysis of Rainfall Trends and Patterns. Journal of Geography and Geology, 3(1), 51–62. https://doi.org/10.5539/jgg.v3n1p51

Eli, H. D., & Bariweni, P. A. (2020). Effects of Seasonal Characteristics of Kolo Creek Flooding on Farm-Plot Sizes in Central Niger Delta, Nigeria. Journal of Applied Sciences and Environmental Management, 24(5), 857–862. https://doi.org/10.4314/jasem.v24i5.20

Gaisie, E., Adu-Gyamfi, A., & Owusu-Ansah, J. K. (2022). Gender and household resilience to flooding in informal settlements in Accra, Ghana. Journal of Environmental Planning and Management, 65(8), 1390–1413. https://doi.org/10.1080/09640568.2021.1930522

Ghosh, A., & Kar, S. K. (2018). Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Natural Hazards, 94(1), 349–368. https://doi.org/10.1007/s11069-018-3392-y

Hansson, K., Danielson, M., & Ekenberg, L. (2008). A framework for evaluation of flood management strategies. Journal of Environmental Management, 86(3), 465–480. https://doi.org/10.1016/j.jenvman.2006.12.037

Kamal, A. S. M. M., Shamsudduha, M., Ahmed, B., Hassan, S. M. K., Islam, M. S., Kelman, I., & Fordham, M. (2018). Resilience to flash floods in wetland communities of northeastern Bangladesh. International Journal of Disaster Risk Reduction, 31(June), 478–488. https://doi.org/10.1016/j.ijdrr.2018.06.011

Lawal, D. U., Matori, A. N., Yusuf, K. W., Hashim, A. M., & Balogun, A. L. (2014). Analysis of the flood extent extraction model and the natural flood influencing factors: A GIS-based and remote sensing analysis. IOP Conference Series: Earth and Environmental Science, 18(1), 1–6. https://doi.org/10.1088/1755-1315/18/1/012059

Leal, M., Fragoso, M., Lopes, S., & Reis, E. (2020). Material damage caused by high-magnitude rainfall based on insurance data: Comparing two flooding events in the Lisbon Metropolitan Area and Madeira Island, Portugal. International Journal of Disaster Risk Reduction, 51(August), 1=16. https://doi.org/10.1016/j.ijdrr.2020.101806

Mahmoud, S. H., & Gan, T. Y. (2018). Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. Journal of Cleaner Production, 196, 216–229. https://doi.org/10.1016/j.jclepro.2018.06.047

Majeed, M., Lu, L., Anwar, M. M., Tariq, A., Qin, S., El-Hefnawy, M. E., El-Sharnouby, M., Li, Q., & Alasmari, A. (2023). Prediction of flash flood susceptibility using integrating analytic hierarchy process (AHP) and frequency ratio (FR) algorithms. Frontiers in Environmental Science, 10(January), 1–14. https://doi.org/10.3389/fenvs.2022.1037547

Mohamed Shaluf, I. (2007). An overview on disasters. Disaster Prevention and Management: An International Journal, 16(5), 687–703. https://doi.org/10.1108/09653560710837000

Nkeki, F. N., Bello, E. I., & Agbaje, I. G. (2022). Flood risk mapping and urban infrastructural susceptibility assessment using a GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria. International Journal of Disaster Risk Reduction, 77(January), 1–28. https://doi.org/10.1016/j.ijdrr.2022.103097

Ntajal, J., Lamptey, B. L., Mahamadou, I. B., & Nyarko, B. K. (2017). Flood disaster risk mapping in the Lower Mono River Basin in Togo, West Africa. International Journal of Disaster Risk Reduction, 23(October 2016), 93–103. https://doi.org/10.1016/j.ijdrr.2017.03.015

Odewole, B. A., Yusuf, A. Y., Ibrahim, S. O., & Jibrin, G. (2020). Earth Observation-based Damage Assessment of 2018 Flood in Parts of Hadejia-Jama’ are River Basin, Nigeria. International Journal of Environment and Climate Change, February, 34–44. https://doi.org/10.9734/ijecc/2020/v10i230179

Odunuga, S., Okeke, I., Omojola, A., & Oyebande, L. (2011). Hydro-climatic variability of the Hadejia-Jama’are river systems in north-central Nigeria. IAHS-AISH Publication, 344(July), 163–168.

Ogbo, A., Lauretta, N. E., & Ukpere, W. (2013). Risk Management and Challenges of Climate Change in Nigeria. Journal of Human Ecology, 41(3), 221–235. https://doi.org/10.1080/09709274.2013.11906570

Ogden, F. L., Raj Pradhan, N., Downer, C. W., & Zahner, J. A. (2011). Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resources Research, 47(12), 1–12. https://doi.org/10.1029/2011WR010550

Okafor, J. C. (2021). Flood, Livelihood Displacement, and Poverty in Nigeria: Plights of Flood Victims, 2012–2018. African Handbook of Climate Change Adaptation, 2535–2545. https://doi.org/10.1007/978-3-030-45106-6_124

Olalekan, E. I. (2014). Wetland Resources of Nigeria: Case Study of the Hadejia-Nguru Wetlands. Poultry, Fisheries & Wildlife Sciences, 2(2), 1–6. https://doi.org/10.4172/2375-446x.1000123

Olugunorisa, T. (2009). Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria. Journal of Applied Sciences and Environmental Management, 13(2), 17–22. https://doi.org/10.4314/jasem.v13i2.55295

Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water (Switzerland), 6(6), 1515–1545. https://doi.org/10.3390/w6061515

Paranjothy, S., Gallacher, J., Amlôt, R., Rubin, G. J., Page, L., Baxter, T., Wight, J., Kirrage, D., McNaught, R., & Palmer, S. R. (2011). Psychological impact of Summer 2007 floods in England. BMC Public Health, 11, 145–153.

Raimi, M. O., Odubo, T. V., & Omidiji, A. O. (2021). Creating the Healthiest Nation: Climate Change and Environmental Health Impacts in Nigeria: A Narrative Review. Sustainability in Environment, 6(1), p61. https://doi.org/10.22158/se.v6n1p61

Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8

Saaty, T. L. (1997). That is not the analytic hierarchy process: What the AHP is and what it is not. Journal of Multi-Criteria Decision Analysis, 6(6), 324–335. https://doi.org/10.1002/(SICI)1099-1360(199711)6:6<324::AID-MCDA167>3.0.CO;2-Q

Sabo, B. B., Karaye, A. K., Garba, A., & Ja’afar, U. (2016). Typha grass militating against agriculture productivity along Hadejia River, Jigawa State, Nigeria. Scholarly J. Agric. Sci, 6(2), 52–56. http://www.scholarly-journals.com/sjas/archive/2016/May/pdf/Sabo et al.pdf

Shuaibu, A., Hounkpè, J., Bossa, Y. A., & Kalin, R. M. (2022). Flood Risk Assessment and Mapping in the Hadejia River Basin, Nigeria, Using Hydro-Geomorphic Approach and Multi-Criterion Decision-Making Method. Water (Switzerland), 14(22), 1–21. https://doi.org/10.3390/w14223709

Shunmugapriya, K., Panneerselvam, B., Muniraj, K., Ravichandran, N., Prasath, P., Thomas, M., & Duraisamy, K. (2021). Integration of multi criteria decision analysis and GIS for evaluating the site suitability for aquaculture in southern coastal region, India. Marine Pollution Bulletin, 172(June), 112907. https://doi.org/10.1016/j.marpolbul.2021.112907

Singh, L. K., Jha, M. K., & Chowdary, V. M. (2018). Assessing the accuracy of GIS-based Multi-Criteria Decision Analysis approaches for mapping groundwater potential. Ecological Indicators, 91(August 2017), 24–37. https://doi.org/10.1016/j.ecolind.2018.03.070

Sobowale, A., Adewumi, J. K., Otun, J. A., & Adie, D. B. (2010). Water resources potentials of Hadejia River Sub-catchment of Komadugu Yobe River Basin in Nigeria. Agricultural Engineering International: CIGR Journal, 12(2), 1–6.

Staupe-delgado, R., & Rubin, O. (2022). Challenges Associated with Creeping Disasters in Disaster Risk Science and Practice : Considering Disaster Onset Dynamics. International Journal of Disaster Risk Science, 13(1), 1–11. https://doi.org/10.1007/s13753-022-00391-9

Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards, 68(2), 569–585. https://doi.org/10.1007/s11069-013-0639-5

Thomas, D. H.L. (1996). Dam construction and ecological change in the riparian forest of the Hadejia-Jama’are floodplain, Nigeria. Land Degradation and Development, 7(4), 279–295. https://doi.org/10.1002/(SICI)1099-145X(199612)7:4<279::AID-LDR234>3.0.CO;2-L

Thomas, David H.L., & Adams, W. M. (1997). Space, time and sustainability in the hadejia-jama’are wetlands and the komodugu yobe basin, nigeria. Transactions of the Institute of British Geographers, 22(4), 430–449. https://doi.org/10.1111/j.0020-2754.1997.00430.x

Tudunwada, I. Y., & Abbas, A. (2022). Flood vulnerability mapping and prediction for early warning in Jigawa State, Northern Nigeria, using geospatial techniques. International Journal of Disaster Risk Reduction, 79(July), 103156. https://doi.org/10.1016/j.ijdrr.2022.103156

Umar, D. A., Ramli, M. F., Aris, A. Z., Jamil, N. R., & Abdulkareem, J. H. (2018). Runoff irregularities, trends, and variations in tropical semi-arid river catchment. Journal of Hydrology: Regional Studies, 19(November), 335–348. https://doi.org/10.1016/j.ejrh.2018.10.008

Umara, D. A., Ramlib, M. F., Arisc, A. Z., Jamilb, N. R., & Tukur, A. I. (2019). Surface water resources management along hadejia river basin, northwestern nigeria. H2Open Journal, 2(1), 184–199. https://doi.org/10.2166/H2OJ.2019.010

Yahaya, S., Ahmad, N., Abdalla, R. F. (2010). Multicriteria analysis for flood vulnerable areas in hadejia-jama’are river Basin, Nigeria. European Journal of Scientific Research, 42(1), 71–83.

Zahedi, F. (1986). The Analytic Hierarchy Process—A Survey of the Method and its Applications. Interfaces, 16(4), 96–108. https://doi.org/10.1287/inte.16.4.96

Zakaria, A., Umar, N. K., Mohammad, L. A., & Yusuf, R. O. (2022). Flood risks factors and their prevalence in some selected local government areas of Jigawa State, Nigeria. Dutse Journal of Pure and Applied Sciences, 7(4b), 68–77. https://doi.org/10.4314/dujopas.v7i4b.8

Flow Chart of Land Use Land Cover Methodology

Downloads

Published

31-12-2025

How to Cite

Abubakar, A., Sani, M., Ahmad, M. H., & Gambo, J. (2025). GEOSPATIAL FLOOD RISK MAPPING AND VULNERABILITY ASSESSMENT USING GIS AND AHP IN HADEJIA RIVER BASIN, JIGAWA STATE, NIGERIA. FUDMA JOURNAL OF SCIENCES, 9(12), 793-804. https://doi.org/10.33003/fjs-2025-0912-4323

Most read articles by the same author(s)