AN INVESTIGATION ON THE IMPACT OF TEMPERATURE AND THICKNESS VARIATION ON THE PERFORMANCE OF CuAlO2/ZnO AND NiO/ZnO PEROVSKITE SOLAR CELL: A NUMERICAL SIMULATION APPROACH

Authors

  • Aminu Tukur Mohammed Jigawa State Polytechnic, Dutse image/svg+xml
  • Tijjani Darma Hassan Department of Physics, Bayero University, KanoState, Nigeria.
  • Kabiru Aujara Musa Department Statistics, Jigawa State Polytechnic, Dutse, Jigawa State, Nigeria.

DOI:

https://doi.org/10.33003/fjs-2025-0912-4287

Keywords:

SCAPS-1D CuAlO2/ZnO, NiO, HTL, ETL, VOC, Jsc, PCE, Photovoltaic perovskite solar cells, temperature variation, layer thickness(50=140nm)

Abstract

This study presents a numerical simulation of CuAlO2/ZnO, and NiO/ZnO perovskite solar cells (PSCs) using SCAPS-1D software focussing on the impact of temperature variation (300-400K) and layer thickness optimization (50-140nm, varied in 10nm intervals) on device performance. The investigation evaluates key photovoltaic parameters including open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF), and power conversion efficiency (PCE) to determine the optimal design configurations for improved efficiency. The result reveals that, for the CuAlO2/ZnO, increasing the operating temperature leads to a gradual decline in Voc, from 1.05 to 0.91V, while Jsc increased slightly from 23.1mA/cm2 to 25.4mA/cm2. However, FF dropped from 78% to 68% and PCE declined from 18% at 300K to 13.5% at 400K due to enhanced carrier recombination and decreased built in potential. The device optimal performance was obtained at a CuAlO2 thickness of 90nm and ZnO thickness of 100nm achieving Voc=1.05V, Jsc=23.8mA/cm2, FF=78% and PCE=18.6%. In contrast, for the NiO/ZnO configuration Voc reduces from 1.02V at 300K to 0.89V at 400K, while Jsc slightly increased from 24.3mA/cm2 to 26.1mA/cm2 and FF fell from 76% to 66% leading to PCE drop from 18.9% to 14.2%. Layer thickness strongly influences light absorption and charge transport. The NiO/ZnO device showed its optimum performance with a NiO and ZnO layer thicknesses of 100 and 110nm respectively, producing Voc=1.02V, Jsc=24.3mA/cm2, FF=76% and PCE=18.9%. 

References

Abdelrazek, A. S., Shaker, A., and Elgendy, H. (2021). Numerical modelling of perovskite solar cells using SCAPS-1D: A review. Renewable and Sustainable Energy Reviews, 147, 111240. 137(27), 8696–8699.

Abdoulsaad, M., El-Tahan, M. and Ebrahim, S. (2019). Thermal oxidation of sputtered nickel nano-film as hole transport layer for high performance perovskite solar cells. Open

access vol.30, pages 19792-19803, (2019). Materials in electronics https://doi.org/10.1007/s10854-019-02345-2

Alzoubi. T., Kadhem, W. J., Gharram, M. A., Makhadme, G., Abdelfattah, M. A. O.,

Abuelsamen, A., Al-Diabat, A. M., Noqta, O. A., Lazarevic, B., Zyoud, S. M. and Mourched, B (2024). Advanced Optoelectronic Modelling and Optimization of HTLFree FASnl3/C60 perovskite solar cell Architecture for Superior performance.

2024.14(12):1062 doi: 10:3390/nano14121062

Ahn, N., Son, D. Y., Jang, I. H., Kang, S. M., Choi, M., & Park, N. G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society,

Bouich, A., El Kenz, A., Lanaya, K., Oulmi, Y., El Madani, A., & Choukri, A. (2023). Delafossite as hole transport layer: A new pathway for inorganic lead-halide perovskite solar cells. Solar Energy, 250, 58–69.

https://doi.org/10.1016/j.solener.2023.01.022

Boryslewicz, M. A. (2019) ZnO as a Functional Material, a review Ai Lotrikow 32/46,02-

668-Warsaw-Poland-https://doi.org/10.1016/3390/crystal9100505

Burgelman, M.,Verschraegen, J., Degrave, S., & Nollet, P. (2013). Advanced electrical simulation-of-thin-film-solar-cells.-Thin-Solid-Films,-535,-296–301. https://doi.org/10.1016/j.tsf.2012.12.032

Chang, T. C., Huang, Y. J., Lin, C. H., Chen, C.-W., & Chiu, C. H. (2023). Investigation of the performance of perovskite solar cells with ZnO interlayers. Nanomaterials, 13(9), 2202. https://doi.org/10.3390/nano13092202

Chen, W., Wu, Y., Liu, J., Qin, C., Yang, X., Islam, A., Cheng, Y., and Han, L. (2013). Hybrid interfacial layer Leads to solid performance Improvement of Inverted

perovskite Solar Cells DOI: 10.1039/c0ca00000s

Chowdhury, T. H., Ahmed, S., & Chowdhury, M. S. (2020). Impact of temperature on perovskite solar cell performance: A simulation study. Solar Energy, 203, 332–339.

Dupré, O., Vaillon, R., & Green, M. A. (2015). Physics of the temperature coefficients of solar cells. Progress in Photovoltaics: Research and Applications, 23(12), 1847–1858. https://doi.org/10.1002/pip.2596

El-Ahmar, M., Abou-Hashema. A., and Ashraf, M. M. (2016). Mathematical modelling of Photovoltaic module and evaluating the effect of various parameters on its performance DOI:-10.1109/MEPCON.2016.7836976

Fleischer, K.. Norton, E., Mullakey, D., Caffrey, D. and Shvets, I. (2017). Quantifying the Performance of p-Type Transparent Conducting Oxides by Experimental Methods.

Materials (basel).2017 Sep 1;10(9):1019. Doi:10.3390/ma10091019

Islam, M. B., Yanagida, M., Shirai, Y., Nabetani, Y. and Miyano, M. (2017). NiOx Hole

Transport layer with improved Stability and Reproducibility. ACS Omega.2017 May 24;2(5):2291-2299. doi:101021/acsomega.7b00538

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051.

Green, A. M. (1982). Accuracy of analytical expressions for solar cell fill factors s c i e n c e Directvol.7-issue-3-pages-337-230-https://doi.org/10.1016/0379- 6787(82)90057-6

Green, M. (2016). Accurate expressions for solar sell fill factor including series and shunt resistances,-Appl.phys.Lett.108,081111(2016).-https://doi.org/101063/1.4942660

Gulomova, I., Accouche, O., Aliev, R.., Al Barakeh, Z. and Aduazimov, V. (2024). Optimization Geometry and ETL Materials for High-Performance Inverted Perovskite-Solar-Cells-Simulation, PMC11313813, doi:103390/nano14151301

Hossain, K. M., Ishraque, G. F. and Mushtaq, M. (2023). An extensive study on multiple

ETL and HTL Layers to design and simulation of high-performance lead-free CsSnCl3based-perovskite-solar-cells-(2023).-Scientific-reports-13,-Article-number-2521 doi:org/10:1038/s41598-023-28506-2

Jeng, J., Chiang, Y. F., Lee, M. H., Peng, S. R., Guo, T. F., Chen, P. and Wen, T. C. (2013).

CH3NH3PBI3 Perovskite/Fullerence planar-Heterojunction Hybrid solar cells

Advanced materials 2013, 25 (27) 3727-3732. DOI: 10.1002/adma.201301327

Jeon, N.J., Noh, J. Y., Yang, W. S., Kim, Y. C., Ryu, S. and Seok, S. I. (2014) Compositional engineering of perovskites for high-performance solar cells Nature, 517, 476-480

Mahmood, K., Sarwar, S., & Mehran, M. T. (2017). Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Advances, 7(28), 17044– 17062.https://doi.org/10.1039/C6RA28988F

Mann, D. S., Singh, H., Gupta, S., Arora, R., & Mehta, N. (2024). Interfacial engineering of the nickel oxide–perovskite interface for inverted perovskite solar cells. Small,

20(12), 2405953.-https://doi.org/10.1002/smll.202405953

Marlein, J. Burgelman M. (2007) Proceedings of NUMOS (Int. Workshop on Numerical

Modelling of Thin Film Solar Cells, Gent (B), 28-30 March 2007). p. 227-233 2007.

Mohammadian, H., Sarcheshmeh, M. and Ardakani, M. (2018). Recent advancements in compact layer development for perovskite solar cells. Volume 4 issue 11 November

2018, https//:doi.org/10.1016/j.heliyon.2018.e00912

Mortadi, A. Tabbai, Y., Elhafidi, E., Nasrellah, H., Chahid, E., Monkade, M., and Elmoznine, R. (2025) Investigating temperature effects on perovskite solar cell performance via

S C A P S - 1 D - a n d - i m p e d a n c - s p e c t r o s c o p y - S c i e n c e D i r e c t https://doi.org/10.1016/j.clet.2024.100876

Navas, J., Sánchez-Coronilla, A., Gallardo, J. J., et al. (2018). ZnO/NiO nanostructures as efficient electron/hole transport layers for perovskite solar cells. Scientific Reports, 8(1), 1–12.

Ozgur, U., Alivoy, Y. I., Liu, C., Teke, A., Reshchiko, M. A., and Avrutin, V. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied physics 98(4), 041301

Pauwels, H.J. Vanhoutte, G. (2007) Influence of interface states and energy barriers on efficiency of heterojunction solar-cells, J. Phys. D-Appl. Phys., 11 649-667.

Rombach, F M., Haque, S. A. and Macdonald, T. H (2021). Lesson learned from spiroOMeTAD and PTAA in perovskite solar cell. Energy Environ. Sci. 2021.14.51615190 DOI:10.1039/DIEE02095A (Review Article)

Sarkar, D. K., Mandal, S., Hossain, S. S., and Banerjee, S. (2024). Numerical investigation of green-synthesized CuAlO₂ as an HTL in Pb-free perovskite solar cells Heliyon,10, e2300856.-https://doi.org/10.1016/j.heliyon.2024.e2300856

Savva, A., Papadas, I. T., Tsikritzis, D., Ioakeimidis, A., Galatopoulus, F., Kapnisis, K., Fuhrer, R., Hartmeier, B., Oszajka, M. F., Kennou, S., and Choulis, S. A. (2019). Inverted perovskite photovoltaic using flame spray pyrolysis solution based

CuAlO2/CuO-Hole-selective-contact-ACS-Appl-Energy-Mater.2019.-25;2(3):22762287 doi:10.1021/acsaem.9b00070

Sing, P. Ravindra, N.M. (2012) Temperature dependence of solar cell performance-an analysis. ELSEVIER, -Solar-energy-materials-and-solar-cell-101-36-45

Shockley, W. and Queisser, H. J. (1961). Detailed balance limit of p-n junction solar cells.

Journal of Applied Physics 32(3), 510-519. https://doi.org10.1063/1.1736034

Tress, W., Yavari, M., Dominski, K., Yadav, P., Niesen, B., Correra, J. P., Hagfeldt. A. and Graetzel. M. (2018) Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite sola cells. Energy and Environment.

Tress, W. (2017). Organic inorganic halide perovskite; Fundamentals of solar cells, stability and charge carrier dynamics.

Tumen-Ulzii, G., Matsushima, T., Klotz, D., Leyden, M. R., Wang, P., Qin, c., Lee, J., Yang, Y., and Adachi, C. (2020). Hysteresis-less and stable perovskite solar cells with a selfassembled monolayer communication material 1(1) https://doi.org/10.1038/s43246020-0028-z

Wang, T., Ding, D., Wang, X., Zeng, R., Liu, H., and Shen, W. (2018). High-Performance Inverted perovskite Solar Cells with Mesoporous NiOx Hole transport Layer by Electrochemical-Deposition-(2018).-ACS-Omega-2018,-3,12,18434-18443 https//:doi.org/10:1021/acsomega.8b02612

Wu, X., Zhang, J., Chen, Y., Li, H., and Zhou, M. (2022). ZnO electron-transporting layer engineering-realized-over-wide-temperature-windows.EcoMat,-4e-12192.

https://doi.org/10.1002/eom2.12192

Equivalent Circuit of a Solar cell (El-Ahmar, 2016)

Downloads

Published

30-12-2025

How to Cite

Tukur Mohammed, A., Darma Hassan, T., & Aujara Musa, K. (2025). AN INVESTIGATION ON THE IMPACT OF TEMPERATURE AND THICKNESS VARIATION ON THE PERFORMANCE OF CuAlO2/ZnO AND NiO/ZnO PEROVSKITE SOLAR CELL: A NUMERICAL SIMULATION APPROACH. FUDMA JOURNAL OF SCIENCES, 9(12), 675-684. https://doi.org/10.33003/fjs-2025-0912-4287