BIOCHEMICAL AND IMMUNOLOGICAL ASSESSMENT OF ANTITRYPANOSOMAL EFFECT OF NIGELLA SATIVA IN WEST AFRICAN DWARF BUCKS INOCULATED WITH TRYPANOSOMA BRUCEI
DOI:
https://doi.org/10.33003/fjs-2025-0912-4258Keywords:
Nigella sativa, T. brucei, Cardiac injury, Oxidative stress, Cytokines, West African bucksAbstract
African trypanosomosis remains a tropical disease with effects on livestock productivity and agricultural economies. Trypanosoma-brucei infection triggers prompt antigenic variation, and immunomodulatory responses. This study aimed at biochemical and immunological assessment of the antitrypanosomal effects of Nigella-sativa oil on T.brucei-West-African-Dwarf- (WAD) bucks. Sixteen (16) relatively healthy WAD bucks (11.4–12.4 kg, were randomised into four groups (n = 4): uninfected-control; infected + Nigella-sativa oil (40 µL/kg IV on days 22 & 26); infected + diminazene aceturate ; and infected-untreated. Infection was established by jugular-inoculation of 1 mL suspension containing 2×108 T. brucei/ml. Parasitaemia was monitored weekly. Serum samples at peak infection (day 21) and post-treatment (day 35) were assayed for catalase (CAT), superoxide-dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA), interleukin-6 (IL-6), interleukin-10 (IL-10), and cardiac-troponin I (cTnI). Nigella-sativa oil decreased peak parasitaemia from 3.2 × 108 to 1.2 × 107 trypanosomes/ml, attaining 50 % survival; diminazene-aceturate cleared parasites by week-5 with 75 % survival. The disease caused marked decrease in CAT, SOD, and GSH with increased MDA, IL-6, IL-10, and cTnI (p < 0.05). Both treatments lowered MDA and raised CAT and SOD (p < 0.05), but only diminazene restored GSH. Nigella-sativa failed to normalise cytokines or cTnI, whereas diminazene returned IL-6, IL-10, and cTnI toward baseline. Intravenous Nigella-sativa oil shows mild antitrypanosomal effect and partial antioxidant enhancement, but cannot fully clear infection or stop myocardial injury. If integrated with diminazene-aceturate, Nigella-sativa might aid as supportive therapy to facilitate parasite clearance and alleviate oxidative and inflammatory damage.
References
Abakpa, S. A. V., Talabi, A. O., Oyekunle, M. A., Ajibola, E. S., Adebiyi, A. A., Mshelbwala, F. M., and Okandeji, M. E. (2020): Elevation of serum cardiac troponin I concentration in dogs experimentally infected with Trypanosoma congolense. Alexandria Journal of Veterinary Sciences, 65(1), 178–183. https://doi.org/10.5455/ajvs.19984
Abd El-Hakim, Y. M., Al-Sagheer, A. A., Khafaga, A. F., Batiha, G. E., Arif, M.,and Abd El-Hack, M. E. (2021): Nigella sativa supplementation in ruminant diets: Production, health, and environmental perspectives. In Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications (pp. 245–264).
Abdulfatai, A., Eghianruwa, K. I., Biobaku, K. T., Ahmed, A. O., and Basiru, A. (2017). Crude methanolic extract of Moringa oleifera leaves improves the efficacy of Diminazene Aceturate in the treatment of trypanosome-infected rats. Ceylon Journal of Science, 46(4).
Abubakar, Z. and Dabo, N. (2023). Erythrocytic, enzymatic, and histological markers of oxidative stress in subacute and chronic infections in Wistar rats (Rattus norvegicus) infected with Trypanosoma brucei brucei. Disease Markers. https://doi.org/10.1155/2023/10125767
Adeyemi, O. S., and Sulaiman, F. A. (2012). Biochemical and morphological changes in Trypanosoma brucei brucei-infected rats treated with homidium chloride and diminazene aceturate. Journal of Basic and Clinical Physiology and Pharmacology, 23(4), 179–183.
Akanji, M. A., Adeyemi, O. S., Oguntoye, S. O., and Sulyman, F. (2009) Psidium guajava extract reduces trypanosomosis-associated lipid peroxidation and raises glutathione concentrations in infected animals. EXCLI Journal, 8(1), 148–154.
Akbar, S. (2018): Nigella sativa (black seeds): Panacea or hyperbole? A critical review of experimental and clinical observations. Australian Journal of Herbal and Naturopathic Medicine, 30(4), 157–172.
Akpa, P., Umeakuana, P., Nnaji, T., and Anene, B. (2021) Effect of treatment with trypanocides on Trypanosoma brucei-induced oxidative stress and antioxidant enzyme activities in dogs. Sokoto Journal of Veterinary Sciences, 19(2), 121–128. https://doi.org/10.4314/sokjvs.v19i2.7
Alzohairy, M. A., Khan, A. A., Alsahli, M. A., Almatroodi, S. A., and Rahmani, A. H. (2021): Protective effects of thymoquinone, an active compound of Nigella sativa, on rats with benzo(a)pyrene-induced lung injury through regulation of oxidative stress and inflammation. Molecules, 26(11), 3218. https://doi.org/10.3390/molecules26113218
Ameen, S. A., Joshua, R. A., Adedeji, O. S., Raheem, A. K., and Akingbade, A. A. (2008):
Preliminary studies on prevalence of ruminant trypanosomosis in Ogbomoso area of Oyo State,
Nigeria. Middle-East Journal of Scientific Research, 3, 214–218.
Anosa, V. O., and Kaneko, J. J. (1984): Pathogenesis of Trypanosoma brucei infection in deer mice (Peromyscus maniculatus): Ultrastructural pathology of the spleen, liver, heart, and kidney. Veterinary Pathology, 21(2), 229–237. https://doi.org/10.1177/030098588402100216
Banwo, O. G., Popoola, D. O., Achem, J., and Jeremiah, O. T. (2024): Evaluation of hematobiochemical and oxidative stress parameters in natural bovine Trypanosoma brucei infection. Veterinaria, 73(2), 138–149.
Baral,T. N. (2009): Immunobiology of African trypanosomes: Need for alternative interventions. BioMed Research International, 2010(1), 389153. https://doi.org/10.1155/2010/389153
Bordoni, L., Fedeli, D., Nasuti, C., Maggi, F., Papa, F., Wabitsch, M., De Caterina, R., and Gabbianelli, R. (2019): Antioxidant and anti-inflammatory properties of Nigella sativa oil in human pre-adipocytes. Antioxidants, 8(2), 51. https://doi.org/10.3390/antiox8020051
Caljon, G., Mabille, D., Stijlemans, B., De Trez, C., Mazzone, M., Tacchini-Cottier, F., Malissen, M., Van Ginderachter, J. A., Magez, S., De Baetselier, P., and Van Den Abbeele, J. (2018). Neutrophils enhance early Trypanosoma brucei infection onset. Scientific Reports, 8(1), 11203. https://doi.org/10.1038/s41598-018-29527-y
Caljon, G., Van Reet, N., De Trez, C., Vermeersch, M., Pérez-Morga, D., and Van Den Abbeele,
J. (2016): The dermis as a delivery site of Trypanosoma brucei for tsetse flies. PLOS Pathogens,
12(7), e1005744.
Chibale, K. (2005). Economic drug discovery and rational medicinal chemistry for tropical diseases. Pure and Applied Chemistry, 77, 1957–1964.
Crilly, N. P., Zita, M. D., Beaver, A. K., Sysa-Shah, P., Bhalodia, A., Gabrielson, K., Adamo, L., and Mugnier, M. R. (2025): A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. Microbiology Spectrum, 13, e01623–24. https://doi.org/10.1128/spectrum.01623-24
Daba,N.T., and Maigari, A.K.,(2018): Prevalence of Trypanosomes in Trade Bos indicus (Cattle) at Kano, Nigeria, Fudas Journal of Sciences (FJS) 2(2) : 184-191
Dwita, L. P., Yati, K., and Gantini, S. N. (2019): The anti-inflammatory activity of Nigella sativa balm sticks. Scientia Pharmaceutica, 87(1), 3. https://doi.org/10.3390/scipharm87010003
Eghianruwa, K. I., and Oridupa, O. A. (2018):Chemotherapeutic control of trypanosomosis: A review of past measures, current status and future trends. Veterinarski Arhiv, 88(2), 245–270.
Ekanem, J., and Yusuf, O. (2008) :Some biochemical and haematological effects of black seed (Nigella sativa) oil on Trypanosoma brucei-infected rats. African Journal of Biomedical Research, 11(1).
El Tahir, K. E., Ashour, M. M., and Al-Harbi, M. M. (1993) : The respiratory effects of the volatile oil of the black seed (Nigella sativa) in guinea pigs: Elucidation of the mechanism(s) of action. General Pharmacology: The Vascular System, 24(5), 1115–1122.
El-Gindy, Y., Zeweil, H., Zahran, S., El-Rahman, M. A., and Eisa, F. (2020): Hematologic, lipid profile, immunity and antioxidant status of growing rabbits fed black seed as natural antioxidants. Tropical Animal Health and Production, 52(3), 999–1004. https://doi.org/10.1007/s11250-019-02091-x
Herbert, W. J., and Lumsden, W. H. R. (1976): Trypanosoma brucei: A rapid “matching” method for estimating the host's parasitemia. Experimental Parasitology, 40(3), 427–431.
Hoet, S., Opperdoes, F., Brun, R., and Quetin-Leclercq, J. (2004): Natural products active against African trypanosomes: A step towards new drugs. Natural Product Reports, 21, 353–364.
Hossen, M. J., Yang, W. S., Kim, D., Aravinthan, A., Kim, J. H., and Cho, J. Y. (2017): Thymoquinone: An IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Scientific Reports, 7, 42995. https://doi.org/10.1038/srep42995
Kato, C. D., Alibu, V. P., Nanteza, A., Mugasa, C. M., and Matovu, E. (2015): Interleukin (IL)-6 and IL-10 are upregulated in late-stage Trypanosoma brucei rhodesiense sleeping sickness. PLOS Neglected Tropical Diseases, 9(6), e0003835.
Kato, C. D., Matovu, E., Mugasa, C. M., Nanteza, A., and Alibu, V. P. (2016): The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness. Allergy, Asthma & Clinical Immunology, 12, 1–10.
Kato, E., Tokunaga, Y., Sakanashi, M., and Kurokawa, M. (2016): Anti-inflammatory effects of Nigella sativa oil extract in murine models. Journal of Ethnopharmacology, 194, 1–9.
Kazemi, M. (2014). Phytochemical composition, antioxidant, anti-inflammatory, and antimicrobial activity of Nigella sativa L. essential oil. Journal of Essential Oil Bearing Plants, 17(5), 1002–1011. https://doi.org/10.1080/0972060X.2014.914857
Koshak, A. E., Koshak, E. A., Mobeireek, A. F., Al-Kadi, H. A., Wali, S. O., and Al-Otair, H. A. (2018): Thymoquinone in the treatment of experimental allergic asthma. Annals of Saudi Medicine, 38(2), 82–88.
Leigh, O. O., Emikpe, B. O., and Ogunsola, J. O. (2015): Histopathological changes in some reproductive and endocrine organs of Trypanosoma brucei-infected West African dwarf goat does. Bulgarian Journal of Veterinary Medicine, 18(1).
Liu, Y., Huang, L., Kim, M.-Y., and Cho, J. Y. (2022): The role of thymoquinone in inflammatory response in chronic diseases. International Journal of Molecular Sciences, 23(18), 10246. https://doi.org/10.3390/ijms231810246
Machado-Silva, A., Cerqueira, P. G., Grazielle-Silva, V., Gadelha, F. R., de Figueiredo Peloso, E., Teixeira, S. M. R., and Machado, C. R. (2016): How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. Mutation Research/Reviews in Mutation Research, 767, 8–22.
Magez, S., and Radwanska, M. (2009): African trypanosomiasis and antibodies: Implications for vaccination, therapy and diagnosis. Future Microbiology, 4(8), 1075–1087. https://doi.org/10.2217/fmb.09.65
Majdalawieh, A. F., and Fayyad, M. W. (2010). Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. International Immunopharmacology, 10(11), 1396–1403.
Morrison, L. J., Steketee, P. C., Tettey, M. D., and Matthews, K. R. (2023). Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence, 14(1), 2150445. https://doi.org/10.1080/21505594.2022.2150445
Murray, M., Murray, P. K., and McIntyre, W. I. M. (1977). An improved parasitological technique for the diagnosis of African trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 71(4), 325–326.
Namangala, B., De Baetselier, P., Noel, W., Brys, L., and Beschin, A. (2001). Alternative versus classical macrophage activation during experimental African trypanosomosis. Journal of Leukocyte Biology, 69(3), 387–396.
Norouzi, F., Abareshi, A., Asgharzadeh, F., Beheshti, F., Hosseini, M., Farzadnia, M., and Khazaei, M. (2017). The effect of Nigella sativa on inflammation-induced myocardial fibrosis in male rats. Research in Pharmaceutical Sciences, 12(1), 74–81. https://doi.org/10.4103/1735-5362.199050
Nwoha, R. I. O., Anene, B. M., and Chukwu, C. O. C. (2009). Serum biochemical changes in West African dwarf goats naturally infected with Trypanosoma vivax before and after treatment with diminazene aceturate or isometamidium chloride. Veterinary Parasitology. https://doi.org/10.1016/j.vetpar.2009.01.022
Ogunsanmi, A. O., and Taiwo, V. O. (2001). Pathobiochemical mechanisms involved in the control of the disease caused by Trypanosoma congolense in African grey duiker (Sylvicapra grimmia). Veterinary Parasitology, 96(1), 51–63.
Okello, I., Mafie, E., Eastwood, G., Nzalawahe, J., and Mboera, L. E. (2022): African animal trypanosomiasis: A systematic review on prevalence, risk factors and drug resistance in sub-Saharan Africa. Journal of Medical Entomology, 59(4), 1099–1143.
Paiva, C. N., Medei, E., and Bozza, M. T. (2018): ROS and Trypanosoma cruzi: Fuel to infection, poison to the heart. PLOS Pathogens, 14(4), e1006928.
Pandey, V., Nigam, R., Jaiswal, A. K., et al. (2015). Haemato-biochemical and oxidative status of buffaloes naturally infected with Trypanosoma evansi. Veterinary Parasitology, 212(3–4), 118–122. https://doi.org/10.1016/j.vetpar.07.025
Ranjithkumar, M., Kamili, N. M., Saxena, A., Dan, A., Dey, S., and Raut, S. S. (2011). Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi. Veterinary Parasitology, 180(3), 349–353.
Shukla, R., Soni, J., Kumar, A., and Pandey, R. (2024). Uncovering the diversity of pathogenic invaders: Insights into protozoa, fungi, and worm infections. Frontiers in Microbiology, 15, 1374438.
Singh, S., Das, S. S., Singh, G., Schuff, C., de Lampasona, M. P., and Catalán, C. A. (2014). Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.). BioMed Research International, 2014, 918209. https://doi.org/10.1155/2014/918209
Sternberg, J. M. (2004). Human African trypanosomiasis: Clinical presentation and immune response. Parasite Immunology, 26, 469–476.
Student, P., and Gosset, W. S. (1908). The error of a mean. Biometrika, 6, 1–25.
Sultan, M. T., Butt, M. S., Karim, R., Ahmed, W., Kaka, U., Ahmad, S., Dewanjee, S., Jaafar, H. Z., and Zia-Ul-Haq, M. (2015). Nigella sativa fixed and essential oil modulates glutathione redox enzymes in potassium bromate-induced oxidative stress. BMC Complementary and Alternative Medicine, 15, 330. https://doi.org/10.1186/s12906-015-0853-7
Taylor, K. A., and Mertens, B. (1999). Immune response of cattle infected with African trypanosomes. Memórias do Instituto Oswaldo Cruz, 94, 239–244.
Tesfaye, D., Speybroeck, N., De Deken, R., and Thys, E. (2012): Economic burden of bovine trypanosomosis in three villages of Metekel zone, Northwest Ethiopia. Tropical Animal Health and Production, 44, 873–879.
Uzonna, J. E., Kaushik, R. S., Gordon, J. R., and Tabel, H. (1999). Cytokines and antibody responses during Trypanosoma congolense infections in two inbred mouse strains that differ in resistance. Parasite Immunology, 21(2), 57–71.
Weir, W., Capewell, P., Foth, B., Clucas, C., Pountain, A., Steketee, P. and MacLeod, A. (2016) Population genomics reveals the origin and asexual evolution of human infective trypanosomes. eLife, 5, e11473.
Wolkmer, P., da Silva, A. S., Traesel, C. K., Paim, F. C., Cargnelutti, J. F., Pagnoncelli, M., . and dos Anjos Lopes, S. T. (2009). Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Veterinary Parasitology, 165(1–2), 41–46.
Woo, P. T. K. (1970). The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Tropica, 27, 384–386.
Yaro, M., Munyard, K. A., Stear, M. J., and Groth, D. M. (2016): Combatting African Animal Ttrypanosomiasis (AAT) in livestock: The potential role of trypanotolerance. Veterinary Parasitology, 225, 43-52.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Olatunde O. Akintunde, Besong P. Nyenti, Saliu Akanni Ameen, Fiwasade A. Rom-Kalilu, K. Talha Biobaku, Kadir A. Rafiu, M. Hauwa Ambali

This work is licensed under a Creative Commons Attribution 4.0 International License.