CHITOSAN NANOPARTICLE-ENCAPSULATED ACANTHOSPERMUM HISPIDUM FOR ENHANCED IN VITRO ANTIOXIDANT, ANTIMICROBIAL, AND IN VIVO ANTICANCER ACTIVITIES AGAINST HEPATOCELLULAR CARCINOMA
DOI:
https://doi.org/10.33003/fjs-2025-0912-4230Keywords:
Acanthospermum Hispidum, Chitosan Nanoparticles, Antioxidant Activity, Antimicrobial Activity, Hepatocellular CarcinomaAbstract
Hepatocellular carcinoma (HCC) remains a major global health challenge, driven by oxidative stress, chronic inflammation, and limited treatment options. Medicinal plants rich in bioactive phytochemicals offer promising therapeutic alternatives, but many suffer from poor solubility, instability, and low bioavailability, limiting their clinical usefulness. Acanthospermum hispidum, traditionally used for treating infections and inflammatory disorders, contains potent antioxidant, antimicrobial, anti-inflammatory, and anticancer compounds. However, its therapeutic potential requires enhancement through an efficient delivery system.This study investigates the therapeutic effectiveness of A. hispidum extract encapsulated in chitosan nanoparticles (AH-CNP) to improve its stability and bioavailability. The extract (10 mg/mL) was incorporated into a 0.5% chitosan solution, yielding nanoparticles with an encapsulation efficiency of 90 ± 0.33%. Antioxidant evaluation using DPPH assay showed that AH-CNP had a lower IC₅₀ value (4.10 µg/mL) compared to free extract (4.40 µg/mL) and plain chitosan nanoparticles (5.50 µg/mL), indicating improved radical-scavenging activity. AH-CNP also exhibited enhanced antimicrobial activity, producing the widest zone of inhibition (20.50 ± 1.20 mm against E. coli at 8000 µg/mL).In vivo assessment in an HCC-induced rat model demonstrated that AH-CNP (300 mg/kg) significantly reduced liver enzyme levels (ALT, AST, ALP), improved liver function, and restored hepatic architecture. Additionally, pro-inflammatory markers (TNF-α, IL-6, CRP, IL-1β) were markedly suppressed, confirming its anti-inflammatory potential.Overall, the findings suggest that chitosan nanoparticle-encapsulated A. hispidum is a promising nanomedicine for managing HCC and oxidative stress-related diseases. Further studies are needed to evaluate its long-term safety and clinical applicability.
References
Adamu, J., Momoh, O. M., Tor, N. E. T., Ukwu, H. O., Aliyu, J., Saleh, B., & Ahemen, T. (2023). The haematological parameters of donkeys... FUDMA Journal of Sciences, 7(6), 8–11. https://doi.org/10.33003/fjs-2023-0706-2094
Adesegun, S. A., Fajana, A., Orabueze, C. I., & Coker, H. A. B. (2008). Antioxidant and antimicrobial properties of Lannea subscorpioidea extracts. African Journal of Biotechnology, 7(14), 2401–2405.
Adesegun, S. A., Fagbohun, E. D., & Coker, H. A. B. (2008). Antioxidant and hepatoprotective activities of Lannea barteri methanol extract. Journal of Ethnopharmacology, 118(1), 112–118. https://doi.org/10.1016/j.jep.2008.03.015
Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). Biosynthesis of metal nanoparticles using plant extracts and their role in cancer therapy. Biotechnology Advances, 34(7), 1174–1184.
Ali, A., Yusuf, A., & Mohammed, A. (2020). Phytochemical screening and biological activities of Acanthospermum hispidum. Journal of Medicinal Plants Research, 14(5), 200–208.
Ali, A., Zaki, A. M., & Ahmed, M. E. (2020). Phytochemical composition and biological activities of Acanthospermum hispidum: A review. Journal of Medicinal Plants Studies, 8(3), 42–48.
Ali, H., Khan, E., & Ilahi, I. (2018). Hepatoprotective effect of zinc oxide nanoparticles in experimental liver injury. Toxicology Letters, 295, 204–212.
Al-Darwesh, M. Y., Al-Marzoqi, A. H., & Jasim, L. S. (2024). Plant-extract mediated green synthesis of zinc oxide nanoparticles. Journal of Drug Delivery Science and Technology, 94, 105456. https://doi.org/10.1016/j.jddst.2024.105456
Asghar, M. A., Yousuf, R. I., Shoaib, M., & Mukhtar, M. (2023). Myco-synthesized ZnO nanoparticles: Hepatoprotective and antimicrobial potential. Microorganisms, 11(6), 1456. https://doi.org/10.3390/microorganisms11061456
Brown, A., Thompson, L. J., Okafor, N., & Mensah, D. (2018). Antimicrobial and antioxidant properties of thyme essential oil encapsulated in nanoparticles. Journal of Essential Oil Research, 30(4), 289–298. https://doi.org/10.1080/10412905.2018.1451123
Calvo, P., Remuñán-López, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan–tripolyphosphate nanoparticles as protein carriers. Journal of Applied Polymer Science, 63(1), 125–132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
Cheeseman, K. H. (1993). Lipid peroxidation in biological systems. In B. Halliwell & O. Auroma (Eds.), DNA and Free Radicals (pp. 12–17). Ellis Horwood. https://doi.org/10.1016/0968-0004(90)90206-Q
Chen, L., et al. (2022). Encapsulation of ginger extract in chitosan nanoparticles for enhanced bioavailability. Food Chemistry, 375, 131854.
Dagogo, K., Edward, E. D., Kelle, C., & Madu, N. (2009). Biochemical Fingerprinting. ABU Press.
Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Rizwan, M., Jan, F., & Wajidullah. (2021). Functionalization of ZnO nanoparticles for biomedical applications. Advances in Colloid and Interface Science, 294, 102472.
Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., & Sakuragi, N. (2019). Apoptosis and targeted cancer therapy. BioMed Research International, 2019, 1–12.
Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650.
Islam, M. T., et al. (2017). Anti-inflammatory activity mediated by iNOS, COX-2 and cytokine inhibition. Cellular Physiology and Biochemistry, 41(1), 123–134.
Kaur, P., & Mehta, S. K. (2015). The role of capping agents in nanoparticle synthesis. Journal of Materials Chemistry C, 3(4), 1155–1171.
Khan, S. I., et al. (2019). Quercetin as an anticancer agent: Mechanistic review. Frontiers in Pharmacology, 10, 1–14.
Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). ZnO nanoparticle antiseptic activity and toxicity mechanisms. Advances in Colloid and Interface Science, 249, 37–52.
Kumar, R., & Sharma, P. (2018). Encapsulation of bioactive compounds in chitosan nanoparticles. Journal of Pharmaceutical Sciences, 107(3), 883–892.
Kumar, S., Sharma, P., & Sharma, R. (2023). Nanotechnology in biomedical applications. Nanotechnology Reviews, 12(1), 20220123.
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids. The Scientific World Journal, 2013, 162750.
Lee, H., & Choi, S. (2019). Antioxidant activity of chitosan nanoparticles encapsulating herbal extracts. International Journal of Nanomedicine, 14, 4587–4598.
Liu, J., et al. (2020). Chitosan nanoparticles for quercetin delivery. International Journal of Biological Macromolecules, 153, 1125–1133.
Liu, Y., Wang, Z., & Zhang, J. (2021). Phytochemical and antimicrobial properties of Acanthospermum hispidum. Journal of Ethnopharmacology, 278, 114129.
Mishra, P., & Sharma, R. (2020). Nanoparticle encapsulation of plant bioactives. Biotechnology Advances, 38(1), 107520.
Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2021). Chitosan-based nanomaterials for drug delivery. Molecules, 26(10), 2997.
Mohammed, H. D., Al-Hilaly, M. H., & Shah, M. T. (2021). Chitosan nanocarriers for controlled drug delivery. Carbohydrate Polymers, 256, 117502.
Mondal, A., Gandhi, A., Fimognari, C., Atanasov, A. G., & Bishayee, A. (2019). Alkaloids in cancer therapy. European Journal of Pharmacology, 858, 172472.
Naiel, B., Fawzy, M., Elasbah, R., & Abdelkader, M. F. (2022). Green synthesis of ZnO using Limonium narbonense. Scientific Reports, 12, 20278.
Naseer, M., Aslam, U., Khalid, B., & Chen, B. (2020). Green synthesis of ZnO nanoparticles. Scientific Reports, 10, 9057.
Ologhobo, A. D., Adewale, F. A., & Lawal, O. T. (2021). Nephroprotective potentials of zinc nanoparticles. Biomedicine & Pharmacotherapy, 140, 111691.
Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent antibacterial activity of ZnO nanoparticles. Langmuir, 27(7), 4020–4028.
Reddy, A. A., & Raju, M. A. (2019). Chitosan-based nanoparticles for biomedical applications. Journal of Drug Delivery Science and Technology, 54, 102–118.
Sadiq, N., et al. (2018). Diosgenin as an anticancer agent. Phytotherapy Research, 32(12), 2270–2284.
Santhoshkumar, J., Rajeshkumar, S., & Venkat Kumar, S. (2019). Phyto-mediated ZnO nanoparticles using Lannea coromandelica. Drug Invention Today, 11(12), 3125–3130.
Siegel, R. L., Miller, K. D., & Jemal, K. (2020). Cancer statistics 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30.
Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2020). Green synthesis of ZnO nanoparticles. Journal of Nanobiotechnology, 18, 1–15.
Singh, R. P., Hadiya, P. D., & Sharma, S. (2020). Biological synthesis and applications of ZnO nanoparticles. Ceramics International, 46(1), 123–130.
Smith, T., Alvarez, P., Rahman, S., & Chen, W. (2020). Chitosan–TPP nanoparticles for plant-derived bioactive compounds. International Journal of Nanomedicine, 15, 2141–2155. https://doi.org/10.2147/IJN.S220450
Sulaiman, M. R., et al. (2017). Antimicrobial and anti-inflammatory constituents in natural products. Journal of Natural Products, 80(5), 1068–1075.
Thema, F. T., Manikandan, E., Dhlamini, M. S., & Maaza, M. (2015). Green synthesis of ZnO nanoparticles. Materials Letters, 161, 124–127.
Wang, X., et al. (2021). Resveratrol-loaded chitosan nanoparticles. Carbohydrate Polymers, 269, 118321.
World Health Organization. (2024). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Yusuf, A. A., & Abubakar, B. M. (2017). Phytochemical constituents of Lannea subscorpioidea. Nigerian Journal of Pharmaceutical Sciences, 16(1), 45–52.
Zhang, Y., et al. (2019). Curcumin-loaded chitosan nanoparticles for enhanced antioxidant activity. Journal of Food Engineering, 244, 134–142.
Zhang, R., Qin, X., & Kong, F. (2020). Nanotechnology-based delivery systems for improving the therapeutic efficacy of natural products in cancer treatment. Journal of Controlled Release, 324, 451–467.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Shehu Muazu Ahmad, Bashir Ahmad, Misbahu Koramar Boko Lawal

This work is licensed under a Creative Commons Attribution 4.0 International License.