HOMOGENEOUS CATALYSTS FOR THE PRODUCTION OF BIODIESEL FROM GROUNDNUT OIL

Authors

  • HAFIZ AHMAD Federal University Dutse image/svg+xml
  • ABUBAKAR AMINU MUSA
  • Khadija Ibrahim Adam Department of Chemistry, Federal University Dutse, Jigawa State, Nigeria.

DOI:

https://doi.org/10.33003/fjs-2025-0912-4205

Keywords:

Biodiesel, Groundnut Oil, Catalyst, Petroleum, FAME

Abstract

Biodiesel production from renewable feedstocks has gained significant attention as a sustainable alternative to fossil diesel due to rising energy demand and environmental concerns. In this study, biodiesel was produced from groundnut oil via alkali catalyzed transesterification using potassium hydroxide (KOH) as a homogeneous catalyst. The effects of key reaction parameters reaction temperature (50–80 °C), catalyst concentration (0.2–0.8 mol dm⁻³), reaction time (40–70 min), and methanol to oil molar ratio (5:1–11:1) on fatty acid methyl ester (FAME) yield were systematically investigated. The physicochemical properties of the groundnut oil, including acid value and moisture content, were also determined to assess its suitability for biodiesel production. The results showed that biodiesel yield increased with increasing reaction temperature and time up to optimal values, beyond which a decline in conversion was observed. Maximum FAME conversion of 94.7% was achieved at a reaction temperature of 70 °C, catalyst concentration of 0.6 mol dm⁻³, reaction time of 70 min, and methanol to oil ratio of 7:1. The findings demonstrate that groundnut oil is a viable feedstock for biodiesel production using homogeneous catalysis and compare favorably with yields reported in related studies employing both homogeneous and heterogeneous catalysts.

References

Abedin, M. J., Masjuki, H. H., Kalam, M. A., Sanjid, A., Rahman, S. M. A., and Rizwanul Fattah, I. M. (2014). Performance, Emissions, and Heat Losses of Palm and Jatropha Biodiesel Blends in a Diesel Engine. Ind. Crops Prod. 59, 96–104. doi: https://doi.org/10.1016/j.indcrop.2014.05.001

Aghel, B., Mohadesi, M., Razmehgir, M. H., & Gouran, A. (2023). Biodiesel production from waste cooking oil in a micro-sized reactor in the presence of cow bone-based KOH catalyst. Biomass Conversion and Biorefinery, 13(15), 13921-13935.

Aransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F., and Ikhu-Omoregbe, D. I. O. (2014). A Review of Current Technology for Biodiesel Production: State of the Art. Biomass Bioenergy. 61, 276–297. doi: https://doi.org/10.1016/j.biombioe.2013.11.014

Arbab, M. I., Varman, M., Masjuki, H. H., Kalam, M. A., Imtenan, S., Sajjad, H., et al. (2015). Evaluation of Combustion, Performance, and Emissions of Optimum Palm–coconut Blend in Turbocharged and Non-turbocharged Conditions of a Diesel Engine. Energy. Conversion. Management. 90, 111–120. doi: https://doi.org/10.1016/j.enconman.2014.11.017

Ashraful, A. M., Masjuki, H. H., Kalam, M. A., Rizwanul Fattah, I. M., Imtenan, S., Shahir, S. A., et al. (2014). Production and Comparison of Fuel Properties, Engine Performance, and Emission Characteristics of Biodiesel From various non-edible vegetable oils: a review. Energy Conversion. Management. 80, 202–228. doi: https://doi.org/10.1016/j.enconman.2014.01.037

Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews, 16(4), 2070-2093.

Demirbas, A. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy conversion and management, 50(4), 923-927.

Encinar, J. M. J. F. Gonz´alez and A. Rodr´ıguez-Reinares, FuelProcess. Technol., 2007, 88, 513–522.

Fereidooni, L., Tahvildari, K., & Mehrpooya, M. (2018). Trans-esterification of waste cooking oil with methanol by electrolysis process using KOH. Renewable Energy, 116, 183-193.

Ghosh, N., Patra, M., & Halder, G. (2024). Current advances and future outlook of heterogeneous catalytic transesterification towards biodiesel production from waste cooking oil. Sustainable Energy & Fuels, 8(6), 1105-1152.

Gui, M. M., K. T. Lee and S. Bhatia, Energy, 2008, 33, 1646–1653.

Hoekman, S. K., and Robbins, C. (2012). Review of the effects of biodiesel on NOx emissions. Fuel Process. Technology 96, 237–249. doi: https://doi.org/10.1016/j.fuproc.2011.12.036

Mahlia, T. M. I., Syazmi, Z. A. H. S., Mofijur, M., Abas, A. E. P., Bilad, M. R., et al. (2020). Patent landscape review on biodiesel production: technology updates. Renew. Sustainable Energy Reserve. 118:109526. doi: https://doi.org/10.1016/j.rser.2019.109526

Mustapha, L. M., Shago, M. I., Burhanudden, R. H., & Suleiman, G. (2021). Physicochemical analysis and characterization of biodiesel production from Ricinus communis seed oil. FUDMA Journal of Sciences, 5(1), 404-410.

Nabi, M. N., Rahman M. M.,and M. S. Akhter, Application of Thermal Energy., 2009, 29, 2265–2270.

Najafi, G., B. Ghobadian and T. F. Yusaf, Renewable Sustainable Energy Rev., 2011, 15, 3870–3876.

Ong, H. C., Milano, J., Silitonga, A. S., Hassan, M. H., Shamsuddin, A. H., Wang, C.-T., et al. (2019). Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. J. Clean. Prod. 219, 183–198. doi: https://doi.org/10.1016/j.jclepro.2019.02.048

Pinto, A. C., Guarieiro, L. L., Rezende, M. J., Ribeiro, N. M., Torres, E. A., Lopes, W. A., & Andrade, J. B. D. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16, 1313-1330.

Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric environment, 43(1), 37-50.

Raqeeb, M. A., & Bhargavi, R. (2015). Biodiesel production from waste cooking oil. Journal of chemical and pharmaceutical research, 7(12), 670-681.

Ruhul, A. M., Kalam, M. A., Masjuki, H. H., Shahir, S. A., Alabdulkarem, A., Teoh, Y. H., et al. (2017). Evaluating combustion, performance and emission characteristics of Millettia pinnata and Croton megalocarpus biodiesel blends in a diesel engine. Energy 141, 2362–2376. doi: https://doi.org/10.1016/j.energy.2017.11.096

Sadaf, S., Iqbal, J., Ullah, I., Bhatti, H. N., Nouren, S., Nisar, J., & Iqbal, M. (2018). Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustainable cities and society, 41, 220-226.

Semwal, S., Arora, A. K., Badoni, R. P., and Tuli, D. K. (2011). Biodiesel production using heterogeneous catalysts. Bioresour. Technol. 102, 2151–2161. doi: https://doi.org/10.1016/j.biortech.2010.10.080

Shikha, K., and C. Y. Rita, J. Chem. Pharm. Res., 2012, 4, 4219–4230.

Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T., and Boosroh, M. H. (2013a). Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sust. Energ. Rev. 22, 346–360. doi: https://doi.org/10.1016/j.rser.2013.01.055.

Suzihaque, M. U. H., Syazwina, N., Alwi, H., Ibrahim, U. K., Abdullah, S., & Haron, N. (2022). A sustainability study of the processing of kitchen waste as a potential source of biofuel: Biodiesel production from waste cooking oil (WCO). Materials Today: Proceedings, 63, S484-S489.

Usman, F., & Alkali, M. (2024). Preparation and characterization of bentonite clay catalysts for transesterification of waste cooking oil into biodiesel. FUDMA Journal of Sciences, 8(2), 204-211.

Uzun, B.B., M. Kiliç, N. Ozbay, A. E. P ¨ ut ¨ un and E. P ¨ ut ¨ un, ¨Energy, 2012, 44, 347–351

Zabeti, M., Wan Daud, W. M. A., and Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: a review. Fuel Process. Technol. 90, 770–777. doi: https://doi.org/10.1016/j.fuproc.2009.03.010

Transesterification Process (Mustapha et al., 2024)

Downloads

Published

29-12-2025

How to Cite

AHMAD, H., AMINU MUSA, A., & Ibrahim Adam, K. (2025). HOMOGENEOUS CATALYSTS FOR THE PRODUCTION OF BIODIESEL FROM GROUNDNUT OIL. FUDMA JOURNAL OF SCIENCES, 9(12), 338-343. https://doi.org/10.33003/fjs-2025-0912-4205