EVALUATION OF BIOACTIVE COMPOUNDS, IN-VITRO ANTIOXIDANT PROFILE AND ANTI-INFLAMMATORY PROPERTIES OF ETHANOLIC EXTRACTS OF ISOBERLINIA TOMENTOSA

Authors

  • Ajibola Habeebulahi Adekilekun Federal University of Health Sciences, Ila-Orangun, Osun State
  • Olorunshola Dave Omodamiro Micheal Okpara University of Agriculture
  • Ngozi Kalu Achi Kampala International University image/svg+xml
  • Habeebat Adekilekun Oyewusi Federal University of Health Sciences, Ila-Orangun image/svg+xml
  • Rachel Majekodunmi Omodamiro Kampala International University image/svg+xml
  • Bashar Adekilekun Tijani Obafemi Awolowo University Teaching Hospitals Complex image/svg+xml
  • Oluwatosin Olubunmi Oladipo The Federal Polytechnic, Ado-Ekiti image/svg+xml
  • Bolaji Fatai Oyeyemi University of Ilorin image/svg+xml

DOI:

https://doi.org/10.33003/fjs-2025-0912-4188

Keywords:

Anti-inflammatory, Antioxidant, GC-FID, Isoberlinia tomentosa, Oxidative stress, Phytochemicals

Abstract

Oxidative stress and chronic inflammation are interlinked pathological processes implicated in the onset and progression of various chronic diseases. Isoberlinia tomentosa, a Fabaceae family species traditionally used in African medicine, has limited scientific validation despite its ethnomedicinal relevance. This study evaluated the phytochemical composition, in-vitro antioxidant profile, and in-vivo anti-inflammatory activity of the ethanolic fruit extract of I. tomentosa. Qualitative screening revealed significant levels of phenolic compounds, tannins, saponins, terpenoids, and alkaloids. Quantitative GC-FID analysis identified 22 bioactive compounds, including catechin, quercetin, kaempferol, rutin, and apigenin. Acute toxicity testing in Wistar rats indicated an LD₅₀ greater than 5000 mg/kg, suggesting a favorable safety profile. Antioxidant assays (DPPH, ABTS, H₂O₂, OH•, NO• scavenging, FRAP, and TAC) demonstrated strong, dose-dependent radical-scavenging and reducing activities. In an oval albumin-induced paw edema model, the extract significantly reduced inflammation in a dose-dependent manner, with the 1000 mg/kg dose outperforming indomethacin (p < 0.05). These findings provide scientific evidence for the traditional use of I. tomentosa, highlighting its potent antioxidant and anti-inflammatory activities, high safety margin, and potential as a source of plant-based therapeutics for oxidative stress- and inflammation-related disorders.

Author Biography

  • Olorunshola Dave Omodamiro, Micheal Okpara University of Agriculture

    Professor of Pharmacology and Chemotherapy

References

Gambini, J., & Stromsnes, K. (2022). Oxidative stress and inflammation: from mechanisms to therapeutic approaches. Biomedicines, 10(4), 753. https://doi.org/10.3390/biomedicines10040753.

Krzemińska, J., Wronka, M., Młynarska, E., Franczyk, B., & Rysz, J. (2022). Arterial hypertension—Oxidative stress and inflammation. Antioxidants, 11(1), 172. https://doi.org/10.3390/antiox11010172.

Wronka, M., Krzemińska, J., Młynarska, E., Rysz, J., & Franczyk, B. (2022). The influence of lifestyle and treatment on oxidative stress and inflammation in diabetes. International journal of molecular sciences, 23(24), 15743. https://doi.org/10.3390/ijms232415743.

Bezerra, F. S., Lanzetti, M., Nesi, R. T., Nagato, A. C., Silva, C. P. E., Kennedy-Feitosa, E., & Valenca, S. S. (2023). Oxidative stress and inflammation in acute and chronic lung injuries. Antioxidants, 12(3), 548. https://doi.org/10.3390/antiox12030548.

Yilangai, R. M., Onoja, J. D., Saha, S., Elisha, E. B., Manu, S. A., Barshep, Y., & Molokwu‐Odozi, M. (2023). Diversity, abundance, and conservation status of woody species in a West African dry forest. Conservation Science and Practice, 5(3), e12888.

Forghe, B. N., & Nna, P. J. (2020). Phytochemical screening and antimicrobial activities of methanolic extract of Newbouldia laevis roots. World J Pharm Res, 9(4), 73-83. https://doi.org/10.20959/wjpr20204-16950.

Akinloye, O. A., Alagbe, O. A., Ugbaja, R. N., & Omotainse, S. O. (2020). Evaluation of the modulatory effects of Piper guineense leaves and seeds on egg albumin-induced inflammation in experimental rat models. Journal of ethnopharmacology, 255, 112762. https://doi.org/10.1016/j.jep.2020.112762.

Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. https://doi.org/10.3390/molecules27020349.

Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021, 26, 1109. https://doi.org/10.3390/molecules26041109.

Hadiza B, Umar KA, Aminu AA, Bashir AY. Qualitative and Quantitative Phytochemicals Studies of Ethanol Stem bark Extracts of Isoberlinia doka Craib & Stapf and Isoberlinia tomentosa (Harms) Craib & Stapf. Trop J Nat Prod Res. 2020; 4(10):756-764. https://doi.org/10.26538/tjnpr/v4i10.16

Saleh, H. A., Yousef, M. H., & Abdelnaser, A. (2021). The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-κB-mediated inflammation. Frontiers in immunology, 12, 606069. https://doi.org/10.3389/fimmu.2021.606069.

Culhuac, E. B., Maggiolino, A., Elghandour, M. M., De Palo, P., & Salem, A. Z. (2023). Antioxidant and anti-inflammatory properties of phytochemicals found in the yucca genus. Antioxidants, 12(3), 574. https://doi.org/10.3390/antiox12030574.

Khalid, S., Tiwana, H., Saddiqi, F., Ali, K., Adil, M., Javed, T., & Riaz, S. (2021). In vitro antimutagenic, cytotoxic and anticancer potential of Fagonia indica phytochemicals. Pakistan Journal of Pharmaceutical Sciences, 34. https://doi.org/10.36721/PJPS.2021.34.6.SUP.2325-2331.1.

Ali, M. A., Khan, N., Ali, A., Akram, H., Zafar, N., Imran, K., Khan, T., Khan, K., Armaghan, M., Palma-Morales, M., Rodríguez-Pérez, C., Caunii, A., Butnariu, M., Habtemariam, S., & Sharifi-Rad, J. (2024). Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food science & nutrition, 12(5), 3046–3067. https://doi.org/10.1002/fsn3.3986.

Medzhitov, R. (2021). The spectrum of inflammatory responses. Science, 374(6571), 1070-1075. https://doi.org/10.1126/science.abi5200.

Hannoodee, S., & Nasuruddin, D. N. (2024). Acute inflammatory response. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/sites/books/NBK556083/.

Soliman, A. M., & Barreda, D. R. (2022). Acute inflammation in tissue healing. International journal of molecular sciences, 24(1), 641. https://doi.org/10.3390/ijms24010641.

Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., & Li, Y. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. Signal transduction and targeted therapy, 6(1), 263. https://doi.org/10.1038/s41392-021-00658-5.

Ramírez-Pérez, S., Hernández-Palma, L. A., Oregon-Romero, E., Anaya-Macías, B. U., García-Arellano, S., González-Estevez, G., & Muñoz-Valle, J. F. (2020). Downregulation of inflammatory cytokine release from IL-1β and LPS-stimulated PBMC orchestrated by ST2825, a MyD88 dimerisation inhibitor. Molecules, 25(18), 4322. https://doi.org/10.3390/molecules25184322.

Shin, S. A., Joo, B. J., Lee, J. S., Ryu, G., Han, M., Kim, W. Y., ... & Lee, C. S. (2020). Phytochemicals as anti-inflammatory agents in animal models of prevalent inflammatory diseases. Molecules, 25(24), 5932.

Prasad, S., Kumar, V., Singh, C., & Singh, A. (2023). Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology, 31(3), 1117-1147. https://doi.org/10.3390/molecules25245932.

Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27(9), 2901. https://doi.org/10.3390/molecules27092901.

Ge, J., Liu, Z., Zhong, Z., Wang, L., Zhuo, X., Li, J., ... & Bai, R. (2022). Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorganic Chemistry, 124, 105817. https://doi.org/10.1016/j.bioorg.2022.105817.

Wijesekara, T., Luo, J., & Xu, B. (2024). Critical review on anti‐inflammation effects of saponins and their molecular mechanisms. Phytotherapy Research, 38(4), 2007-2022. https://doi.org/10.1002/ptr.8164.

Oluwole, O., Fernando, W. B., Lumanlan, J., Ademuyiwa, O., & Jayasena, V. (2022). Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health–a review. International Journal of Food Science and Technology, 57(10), 6326-6335. https://doi.org/10.1111/ijfs.15936.

Atchan, A. P. N., Monthe, O. C., Tchamgoue, A. D., Singh, Y., Shivashankara, S. T., Selvi, M. K., ... & Dell’Agli, M. (2023). Anti-inflammatory, antioxidant activities, and phytochemical characterization of edible plants exerting synergistic effects in human gastric epithelial cells. Antioxidants, 12(3), 591. https://doi.org/10.3390/antiox12030591.

Zhou, X., Münch, G., Wohlmuth, H., Afzal, S., Kao, M. H., Al-Khazaleh, A., ... & Li, C. G. (2022). Synergistic inhibition of pro-inflammatory pathways by ginger and turmeric extracts in RAW 264.7 cells. Frontiers in pharmacology, 13, 818166. https://doi.org/10.3389/fphar.2022.818166.

Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in pharmacology, 14, 1269581. https://doi.org/10.3389/fphar.2023.1269581.

Unsal, V., Dalkıran, T., Çiçek, M., & Kölükçü, E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Advanced pharmaceutical bulletin, 10(2), 184. https://doi.org/10.34172/apb.2020.023.

Sahoo, B. M., Banik, B. K., Borah, P., & Jain, A. (2022). Reactive oxygen species (ROS): key components in cancer therapies. Anti-Cancer Agents in Medicinal Chemistry-Anti-Cancer Agents), 22(2), 215-222. https://doi.org/10.2174/1871520621666210608095512.

Muscolo, A., Mariateresa, O., Giulio, T., & Mariateresa, R. (2024). Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. International journal of molecular sciences, 25(6), 3264. https://doi.org/10.3390/ijms25063264.

Saleem, S., Ul Mushtaq, N., Shah, W. H., Rasool, A., Hakeem, K. R., & Ul Rehman, R. (2022). Beneficial role of phytochemicals in oxidative stress mitigation in plants. In Antioxidant defense in plants: molecular basis of regulation (pp. 435-451). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-7981-0_20.

Namadina, M. M., Aliyu, B. S., Haruna, H., Sunusi, U., Kamal, R. M., Balarabe, S., ... & Tasiu, S. (2020). Pharmacognostic and acute toxicity study of Burkea africana root. Journal of Applied Sciences and Environmental Management, 24(4), 565-573. https://dx.doi.org/10.4314/jasem.v24i4.4.

Oseni, T. E., Adejoh, M. E., Omowaye, O. S., Attah, F., Peter, J., Tennyson, M. A., Oladipe, T. T., Olubiyo, C. K., Oludare, T. T., Odiba, J. C., Ocean, H. O., & Olopade, T. T. (2024). GC-MS ANALYSIS, QUALITATIVE AND QUANTITATIVE PHYTOCHEMICAL COMPOSITION OF Boerhavia diffusa (Linn.) LEAF EXTRACT CHARACTERIZING ITS MEDICINAL USE. FUDMA JOURNAL OF SCIENCES, 8(6), 144-151. https://doi.org/10.33003/fjs-2024-0806-2889.

Alkali, K., Hamza, M. M., Shehu, M. M., Abdulhamid, M. B., & Audu, H. (2025). Qualitative and Quantitative Phytochemical Screening of Aqueous, Methanol, and Hexane Leaf Extracts of Senna siamea. Sahel Journal of Life Sciences FUDMA, 3(1), 328–336. https://doi.org/10.33003/sajols-2025-0301-40.

Namadina, M. M., Haruna, H., & Sanusi, U. (2020). PHARMACOGNOSTIC, ANTIOXIDANT AND ACUTE TOXICITY STUDY OF Ficus sycomorus (Linn) (Moraceae) ROOT AND STEM BARK. FUDMA JOURNAL OF SCIENCES, 4(2), 605-614. https://doi.org/10.33003/fjs-2020-0402-244

Eidangbe, G. O. (2025). ANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITIES OF STEVIA REBAUDIANA LEAF EXTRACT IN DIABETIC RATS. FUDMA JOURNAL OF SCIENCES, 9(1), 301-306. https://doi.org/10.33003/fjs-2025-0901-2944.

Sulyman, R. A., & Ibrahim, A. S. (2024). AMELIORATIVE POTENTIALS OF Trigonella foenum-graecum (FENUGREEK) SEEDS ON PROTEIN-ENERGY MALNOURISHED RATS. FUDMA JOURNAL OF SCIENCES, 8(6), 385-392. https://doi.org/10.33003/fjs-2024-0806-2946

Abstract

Downloads

Published

31-12-2025

How to Cite

Adekilekun, A. H., Omodamiro, O. D., Achi, N. K., Oyewusi, H. A., Omodamiro, R. M., Tijani, B. A., Oladipo, O. O., & Oyeyemi, B. F. (2025). EVALUATION OF BIOACTIVE COMPOUNDS, IN-VITRO ANTIOXIDANT PROFILE AND ANTI-INFLAMMATORY PROPERTIES OF ETHANOLIC EXTRACTS OF ISOBERLINIA TOMENTOSA. FUDMA JOURNAL OF SCIENCES, 9(12), 148-158. https://doi.org/10.33003/fjs-2025-0912-4188