A SURVEY OF DEEP LEARNING MODEL FOR PROSTATE CANCER DIAGNOSIS

Authors

  • Izogie L. E.
    Edo State Polytechnic, Usen, Benin City
  • M.I Akazue
    Department of Computer Sciences, Faculty of Science, Delta State University, Abraka, Nigeria
  • E. I. Ihama
    Department of Computer Science and Information Technology, School of Applied Sciences, Edo State Polytechnic, Usen, Benin City, Nigeria

Keywords:

Prostate Cancer Detection, Artificial Intelligence (AI), Deep Learning (DL), Machine Learning Models, ResNet, Faster R-CNN

Abstract

Prostate cancer is one of the common types of cancer in men, and it is estimated that 1 out of 9 men will be diagnosed with prostate cancer at some point during their lifetime. AI techniques are being used to detect prostate cancer to improve accuracy and reduce costs, such as Machine Learning (ML) and Deep Learning (DL), which are used to analyze MRI scans and CT scans to analyze patient data such as age, race, family history, and lifestyle factors. The use of DL for prostate cancer detection can help reduce costs by reducing the need for expensive biopsies and other tests. This paper discussed different model and method used in predicting prostate cancer.

Dimensions

Ahmad I., Xia Y., Cui H. and Islam Z. U. (2023). DAN-NucNet: A Dual Attention Based Framework for Nuclei Segmentation in Cancer Histology Images under Wild Clinical Conditions. Expert Syst. Appl. Vol. 213:118945. https://doi.org/10.1016/j.eswa.2022.118945.

Albahri A. S., Ali M. Duhaim, Mohammed A. Fadhel, Alhamzah Alnoor, Noor S. Baqer, Laith Alzubaidi, O. S. (2023). A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion.

]

Alzubaidi L., Bai J., Al-Sabaawi A., Santamaría J., Albahri A. S., Nayyef Al-dabbagh B. S., Fadhel M. A. (2023). A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data. Vol. 10(1):46.

Bygari R., Rithesh K., Ambesange S. and Koolagudi S. G. (2023). Prostate Cancer Grading Using Multistage Deep Neural Networks. In: Doriya R., Soni B., Shukla A., Gao X-Z, editors. Machine Learning; Image Processing, Network Security and Data Sciences. Springer Nature Singapore: Singapore. Vol. 2, pg.71–83.

Dataset. (n.d.). https://www.kaggle.com/competitions/prostate-cancer-grade-assessment.

De Vente C., Vos P., Hosseinzadeh M., Pluim J. and Veta M. (2021). Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI. IEEE Trans Biomed Eng. Vol. 68:374–83. https://doi.org/10.1109/TBME.2020.2993528.

Deepa V., Kumar C. S. and Cherian T. (2022). Ensemble of Multi-Stage Deep Convolutional Neural Networks for Automated Grading of Diabetic Retinopathy Using Image Patches. J King Saud Univ. Comput. Inform Sci. Vol. 34:6255–6265. https://doi.org/10.1016/j.jksuci.2021.05.009.

Dogo E. M., Afolabi O. J. and Twala B. (2022). On the Relative Impact of Optimizers on Convolutional Neural Networks with Varying Depth and Width for Image Classification. Appl Sci. Vol. 12:11976. https://doi.org/10.3390/app122311976.

Du G., Zhou P., Abudurexiti R., Mahpirat Aysa A. and Ubul K. (2022). High-Performance Siamese Network for Real-Time Tracking. Sensors. Vol. 22:8953. https://doi.org/10.3390/s22228953.

El-Rashidy N., ElSayed N. E., El-Ghamry A. and Talaat F. M. (2022). Prediction of gestational diabetes based on explainable deep learning and fog computing. Soft Comput. Vol. 26(21):114, pg.35–50.

El-Rashidy N., Ebrahim N., Ghamry A. and Talaat F. M. (2022). Utilizing fog computing and explainable deep learning techniques for gestational diabetes prediction. Neural Comput. Applic. https://doi.org/10.1007/s00521-022-08007-59.

Elmuogy S., Hikal N. A. and Hassan E. (2021). An efficient technique for CT scan images classification of COVID-19. Journal of Intelligent & Fuzzy Systems. Vol. 40:52, pg.25–38. https://doi.org/10.3233/JIFS-201985.

Esteva A., Dinh C. V., Khiabani H. Z., Chakravarty D., Papana-stasiou A. D., Harrow C., Sonpavde G., Liu Y. and Chen W. (2022). Prostate Cancer Therapy Personalization via Multi-Modal Deep Learning on Randomized Phase III Clinical Trials. NPJ Digit Med. Vol. 5:1. https://doi.org/10.1038/s41746-022-00613-w.

Fatma M. T., Shaker El-Sappagh, Khaled A. and Esraa H. (2024). Improved prostate cancer diagnosis using a modified ResNet50-based deep learning architecture. BMC Medical Informatics and Decision Making. Pg. 24-23. https://doi.org/10.1186/s12911-024-02419-0.

Gamel S. A., Hassan E. and El-Rashidy N. (2023). Exploring the effects of pandemics on transportation through correlations and deep learning techniques. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-15803-1.

Gamel S. A. and Talaat F. M. (2023). SleepSmart: an IoT-enabled continual learning algorithm for intelligent sleep enhancement. Neural Computing and Applications. https://doi.org/10.1007/s00521-023-09310-5.

Hanaa S. and Fatma B. T. (2022). Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization. Bioengineering. Vol. 10(1):18. https://doi.org/10.3390/bioengineering10010018.

Hassan E. (2023). Breast cancer detection: a survey. Artificial Intelligence for Disease Diagnosis and Prognosis in Smart Healthcare. Boca Raton: CRC Press. Pg. 169–176.

Hassan E., El-Rashidy N. and Talaa F. M. (2022). Review: Mask R-CNN Models. https://njccs.journals.ekb.eg.

Hassan E., Shams M., Hikal N. A. and Elmougy S. (2021). Plant Seedlings Classification using Transfer Learning. In: Proceedings of the 2021 International Conference on Electronic Engineering (ICEEM). Pg. 1–4.

Hassan E., Shams M. Y., Hikal N. A. and Elmougy S. (2022). The Effect of Choosing Optimizer Algorithms to Improve Computer Vision Tasks: A Comparative Study. Multimed Tools Appl. https://doi.org/10.1007/s11042-022-13820-0.

Hassan E., Shams M. Y., Hikal N. A. and Elmougy S. A. (2022). Novel Convolutional Neural Network Model for Malaria Cell Images Classification. Comput. Mater Continua. Vol. 72:58, pg. 89–907. https://doi.org/10.32604/cmc.2022.025629.

He K., Zhang X., Ren S. and Sun J. (2023). Deep Residual Learning for Image Recognition. arXiv:1512.03385. http://arxiv.org/abs/1512.03385.

Hosseinzadeh M., Saha A., Brand P., Slootweg I., de Rooij M. and Huisman H. (2022). Deep Learning-Assisted Prostate Cancer Detection on Bi-Parametric MRI. Eur Radiol. Vol. 32:2224–34. https://doi.org/10.1007/s00330-021-08320-y.

Ikromjanov K., Liu X., Asif A., Han Y., Zhang Y., Li S., Li Y. and Wang X. (2021). Region Segmentation of Whole-Slide Images for Analyzing Histological Differentiation of Prostate Adenocarcinoma Using Ensemble EfficientNetB2 U-Net with Transfer Learning Mechanism. Cancers (Basel). Vol. 15:8934.

Kandel I., Castelli M. and Popovič A. (2020). Comparative Study of First Order Optimizers for Image Classification Using Convolutional Neural Networks on Histopathology Images. J Imaging. Vol. 6:92. https://doi.org/10.3390/jimaging6090092.

Li H., Lee C. H., Chia D., Lin Z., Huang W. and Tan C. H. (2022). Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities. Diagnostics. Vol. 12:289. https://doi.org/10.3390/diagnostics12020289.

Li Z., Li J., Li Y., Zhou Y., Cheng Z. and Chen Y. (2023). CDA-Net: A Contrastive Deep Adversarial Model for Prostate Cancer Segmentation in MRI Images. Biomed Signal Process Control. Vol. 83:104622. https://doi.org/10.1016/j.bspc.104622.

Minaee S., Kafieh R., Sonka M., Yazdani S. and Jamalipour G. (2021). Medical Image Analysis. Pg. 1–9.

Naik N., Tokas T., Shetty D. K., Hameed B. M. Z., Shastri S., Shah M. J., Ibrahim S., Rai B. P., Chłosta P. and Somani B. K. (2022). Role of Deep Learning in Prostate Cancer Management: Past, Present and Future. J Clin Med. Vol. 11:3575. https://doi.org/10.3390/jcm11133575.

Nakasi R., Mwebaze E., Zawedde A., Tusubira J., Akera B. and Maiga G. (2020). A New Approach for Microscopic Diagnosis of Malaria Parasites in Thick Blood Smears Using Pre-Trained Deep Learning Models. SN Appl Sci. Vol. 2:1–7. https://doi.org/10.1007/s42452-020-3000-0.

Provenzano D., Grassi N., Santucci D., Rundo L., Vitabile S., Gilardi M. C., Zaffaroni M. and Righetti R. (2023). Machine Learning Algorithm Accuracy Using Single- versus Multi-Institutional Image Data in the Classification of Prostate MRI Lesions. Appl Sci. Vol. 13:1088. https://doi.org/10.3390/app13021088.

Rostami B., Anisuzzaman D. M., Wang C., Gopalakrishnan S., Niezgoda J. and Yu Z. (2021). Multiclass Wound Image Classification Using an Ensemble Deep CNN-Based Classifier. Comput. Biol. Med. Vol. 134:104536. https://doi.org/10.1016/j.compbiomed.2021.104536.

Salman M. E., Çakirsoy Çakar G., Azimjonov J., Kösem M. and Cedi̇moğlu İ. H. (2022). Automated Prostate Cancer Grading and Diagnosis System Using Deep Learning-Based YOLO Object Detection Algorithm. Expert Syst. Appl. Vol. 201:117148. https://doi.org/10.1016/J.ESWA.2022.117148.

Shao I. H., Zhang Y., Li Y., Liu Z., Wang M., Li T., Li X., Li D., Li H. and Li X. (2023). Recognition of Postoperative Cystography Features by Artificial Intelligence. J Pers Med. Vol. 13:126. https://doi.org/10.3390/jpm13010126.

Takahashi M. S., Ribeiro Furtado de Mendonça M., Pan I., Pinetti R. Z. and Kitamura F. C. (2020). Regarding ‘Serial Quantitative Chest CT Assessment of COVID-19: Deep-Learning Approach.’ Radiol Cardiothorac Imaging. Vol. 2:e200242. https://doi.org/10.1148/ryct.2020200242.

Talaat F. M. (2022). Effective Deep Q-Networks (EDQN) Strategy for Resource Allocation Based on Optimized Reinforcement Learning Algorithm. Multimedia Tools and Applications. Vol. 81(17). https://doi.org/10.1007/s11042-022-13000-0.

Talaat F. M. (2022). Effective Prediction and Resource Allocation Method (EPRAM) in Fog Computing Environment for Smart Healthcare System. Multimed Tools Appl.

Talaat F. M. (2023). Crop Yield Prediction Algorithm (CYPA) in Precision Agriculture Based on IoT Techniques and Climate Changes. Neural Comput. Applic. Vol. 35:17281–92. https://doi.org/10.1007/s00521-023-08619-5.

Talaat F. M. (2023). Real-Time Facial Emotion Recognition System Among Children with Autism Based on Deep Learning and IoT. Neural Computing and Applications. Vol. 35(3). https://doi.org/10.1007/s00521-023-08372-9.

Talaat F. M. (2023). The Effect of Consanguineous Marriage on Reading Disability Based on Deep Neural Networks. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-17587-w.

Talaat F. M. (2023). Toward Interpretable Credit Scoring: Integrating Explainable Artificial Intelligence with Deep Learning for Credit Card Default Prediction. Neural Computing and Applications. https://doi.org/10.1007/s00521-023-09232-2.

Talaat F. M. (2024). Real-Time Facial Emotion Recognition Model Based on Kernel Autoencoder and Convolutional Neural Network for Autism Children. Soft Computing. https://doi.org/10.1007/s00500-023-09477-y.

Talaat F. M. and Gamel S. A. (2023). A2M-LEUK: Attention-Augmented Algorithm for Blood Cancer Detection in Children. Neural Computing and Applications. https://doi.org/10.1007/s00521-023-08678-8.

Veeling B. S., Linmans J., Winkens J., Cohen T. and Welling M. (2018). Rotation Equivariant CNNs for Digital Pathology. Lecture Notes in Computer Science. 11071:210–218. https://doi.org/10.1007/978-3-030-00934-2_24.

Wang Z., Wu R., Xu Y., Liu Y., Chai R. and Ma H. (2023). A Two-Stage CNN Method for MRI Image Segmentation of Prostate with Lesion. Biomed Signal Process Control. Vol. 82:104610. https://doi.org/10.1016/j.bspc.104610.

Xiang J., Zhang J., Zhang Y., Chen S., Chen J., Xu B., Zhang W., Ma J., Wang L. and Xia Y. (2023). Automatic Diagnosis and Grading of Prostate Cancer with Weakly Supervised Learning. Comput Biol Med. Vol. 152:106340. https://doi.org/10.1016/j.compbiomed.2022.106340.

Xu D., Li F., Li Y., Li X., Zhang Y., Li X., Wu J., Zhang Y., Li B. and Dong X. (2023). Mask R-CNN Assisted 2.5D Object Detection Pipeline. Sci. Rep. Vol. 13:1696. https://doi.org/10.1038/s41598-023-28669-y.

Yaqoob M. K., Ali S. F., Bilal M., Hanif M. S. and Al-Saggaf U. M. (2021). ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy Detection. Sensors. Vol. 21:3883. https://doi.org/10.3390/s21113883.

Yu R., Li Y., Li X., Li B., Li Y., Li H. and Li H. (2023). PI-RADSAI: Introducing a New Human-in-the-Loop AI Model for Prostate Cancer Diagnosis Based on MRI. Br J Cancer. https://doi.org/10.1038/s41416-022-02137-2.

Zhang J., Xie Y., Wu Q. and Xia Y. (2019). Medical Image Classification Using Synergic Deep Learning. Med Image Anal. Vol. 54:10–9. https://doi.org/10.1016/j.media.2019.02.010.

Zhu L., Liu Y., Yang M., Cai H., Wu M., Zhang Y., Wang X., Zhang Y., Sun X. and Liu X. (2023). An Accurate Prediction of the Origin for Bone Metastatic Cancer Using Deep Learning on Digital Pathological Images. EBioMedicine. Vol. 87:104426. https://doi.org/10.1016/j.ebiom.2022.104426.

Published

04-11-2025

How to Cite

L. E., I., Akazue, M., & Ihama, E. I. (2025). A SURVEY OF DEEP LEARNING MODEL FOR PROSTATE CANCER DIAGNOSIS. FUDMA JOURNAL OF SCIENCES, 9(11), 367 – 371. https://doi.org/10.33003/fjs-2025-0911-4187

How to Cite

L. E., I., Akazue, M., & Ihama, E. I. (2025). A SURVEY OF DEEP LEARNING MODEL FOR PROSTATE CANCER DIAGNOSIS. FUDMA JOURNAL OF SCIENCES, 9(11), 367 – 371. https://doi.org/10.33003/fjs-2025-0911-4187