PHYSIOCHEMICAL, THERMAL, AND MORPHOLOGICAL CHARACTERISTICS OF MILLET HUSK (PENNISETUM GLAUCUM L) FOR POLYMER COMPOSITE APPLICATION
DOI:
https://doi.org/10.33003/fjs-2025-0912-4182Keywords:
Millet husk, Alkali treatment, Physical properties, Chemical properties, Thermal behaviourAbstract
The depletion of synthetic fibers, which are mostly petroleum-based products, has mitigated the growing need to search for natural fibers for local and industrial applications. There is a need to identify new natural fibers for utilization in polymer matrix composites in order to achieve a better mix of fiber and polymer for a variety of applications. Therefore, this research aims to characterize untreated and alkaline-treated millet husk (Pennisetum glaucum L) as an underexplored fiber to evaluate its physiochemical and thermal behaviour for its possible use as reinforcement in a polymer matrix. Millet husk is a waste obtained after threshing and separation of millet grains from the panicle with fruit of the millet plant. The findings revealed that the alkali-treated millet husk (TMH) contains higher cellulose content of 73.74 %, lower density of 0.10 g/cm3, less moisture content of 1.37 %, and higher crystallinity index (CI) of 66.67 % than untreated millet husk (UTMH). There was a disappearance of the lignin peak in Fourier transform infrared (FTIR) and an improvement in thermal degradation temperature of the TMH. The surface morphology of TMH was found to be rough, which enables effective adhesion with the polymer matrix. Thus, the improved properties of TMH demonstrate its utilization as a possible reinforcement material in the development of polymer composites.
References
Abdul Karim, M. R., Tahir, D., Khan, K. I., Hussain, A., Haq, E. U., & Malik, M. S. (2023). Improved mechanical and water absorption properties of epoxy-bamboo long natural fibres composites by eco-friendly Na 2 CO 3 treatment. Plastics, Rubber and Composites, 52(2), 114–127. https://doi.org/10.1080/14658011.2022.2030152
Acharya, P., Pai, D., Bhat, K. S., & Mahesha, G. T. (2024). Effect of Surface Chemical Modifications on Thermo-Physical and Mechanical Properties of Helicteres isora Natural Fiber. Journal of Natural Fibers, 21(1). https://doi.org/10.1080/15440478.2024.2406454
Adamu, B. F., Shitahun, Y., Adane, S., Aferu, T., & Tadesse, K. (2024). Extraction and characterization of bark fibers from Ethiopian Ficus thonningii tree. Discover Materials, 4(1), 1–11. https://doi.org/10.1007/s43939-024-00141-2
Adazabra, A. N., & Viruthagiri, G. (2023). Use of waste husk from millet grain cultivation in the production of fired clay bricks. International Journal of Ceramic Engineering & Science, 5(4). https://doi.org/10.1002/ces2.10179
Al-Maharma, A., & Al-Huniti, N. (2019). Critical Review of the Parameters Affecting the Effectiveness of Moisture Absorption Treatments Used for Natural Composites. Journal of Composites Science, 3(1), 27. https://doi.org/10.3390/jcs3010027
Aliyu, I., Sapuan, S. M., Zainudin, E. S., Rashid, U., Zuhri, M. Y. M., & Yahaya, R. (2023). Characterization of Ash from Sugar Palm [ Arenga Pinnata (Wrumb) Merr .] Fiber for Industrial Application. Journal of Natural Fibers, 20(1). https://doi.org/10.1080/15440478.2023.2170943
Anuar, M. F., Fen, Y. W., Zaid, M. H. M., Matori, K. A., & Khaidir, R. E. M. (2020). The Physical and Optical Studies of Crystalline Silica Derived from the Green Synthesis of Coconut Husk Ash. Applied Sciences, 10(6), 2128. https://doi.org/10.3390/app10062128
Atalie, D., & Gideon, R. K. (2018). Extraction and characterization of Ethiopian palm leaf fibers. Research Journal of Textile and Apparel, 22(1), 15–25. https://doi.org/10.1108/RJTA-06-2017-0035
Bachchan, A. A., Das, P. P., & Chaudhary, V. (2022). Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review. Materials Today: Proceedings, 49(xxxx), 3403–3408. https://doi.org/10.1016/j.matpr.2021.02.812
Bashir, M., Ibrahim, A., Idi, A., & Abdulmalik, M. (2022). PROXIMATE COMPOSITION, SENSORY EVALUATION AND PRODUCTION OF COOKIES (BISCUIT) FROM FINGER MILLET AND WHEAT FLOUR. FUDMA JOURNAL OF SCIENCES, 6(1), 1–6. https://doi.org/10.33003/fjs-2022-0601-862
Bekele, A. E., Lemu, H. G., & Jiru, M. G. (2022). Experimental study of physical , chemical and mechanical properties of enset and sisal fibers. Polymer Testing, 106(November 2021), 107453. https://doi.org/10.1016/j.polymertesting.2021.107453
Bouramdane, Y., Fellak, S., El Mansouri, F., & Boukir, A. (2022). Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD). Fermentation, 8(12), 698. https://doi.org/10.3390/fermentation8120698
Dungani, R., Bakshi, M. I., Hanifa, T. Z., Dewi, M., Syamani, F. A., Mahardika, M., & Fatriasari, W. (2024). Isolation and Characterization of Cellulose Nanofiber (CNF) from Kenaf (Hibiscus cannabinus) Bast through the Chemo-Mechanical Process. Journal of Renewable Materials, 12(6), 1057–1069. https://doi.org/10.32604/jrm.2024.049342
Eyupoglu, S., Eyupoglu, C., & Merdan, N. (2024). Physico-chemical characterization of Sambucus ebulus L. plant stem fiber. Biomass Conversion and Biorefinery, 14(17), 20623–20633. https://doi.org/10.1007/s13399-023-04054-7
Gairola, S., Sinha, S., & Singh, I. (2022). Novel millet husk crop-residue based thermoplastic composites: Waste to value creation. Industrial Crops and Products, 182, 114891. https://doi.org/10.1016/j.indcrop.2022.114891
Hamin, S. H., Sayid Abdullah, S. H. Y., Lananan, F., Abdul Hamid, S. H., Kasan, N. A., Mohamed, N. N., & Endut, A. (2023). Effect of chemical treatment on the structural, thermal, and mechanical properties of sugarcane bagasse as filler for starch‐based bioplastic. Journal of Chemical Technology & Biotechnology, 98(3), 625–632. https://doi.org/10.1002/jctb.7218
Huang, Y., Meng, F., Liu, R., Yu, Y., & Yu, W. (2019). Morphology and supramolecular structure characterization of cellulose isolated from heat-treated moso bamboo. Cellulose, 26(12), 7067–7078. https://doi.org/10.1007/s10570-019-02614-7
Ibrahim, M. I. J., Sapuan, S. M., Zainudin, E. S., & Zuhri, M. Y. M. (2019). Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites. International Journal of Biological Macromolecules, 139, 596–604. https://doi.org/10.1016/j.ijbiomac.2019.08.015
Ikumapayi, O. M., Afolalu, S. A., Bodunde, O. P., Ugwuoke, C. P., Benjamin, H. A., & Akinlabi, E. T. (2022). Efficacy of heat treatment on the material properties of aluminium alloy matrix composite impregnated with silver nano particle/calcium carbonate Al –AgNp/CaCO3. International Journal of Advanced Technology and Engineering Exploration, 9(89). https://doi.org/10.19101/IJATEE.2021.874829
Ilyas, R. A., Sapuan, S. M., Asyraf, M. R. M., Dayana, D. A. Z. N., Amelia, J. J. N., Rani, M. S. A., Norrrahim, M. N. F., Nurazzi, N. M., Aisyah, H. A., Sharma, S., Ishak, M. R., Rafidah, M., & Razman, M. R. (2021). Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers, 13(11), 1701. https://doi.org/10.3390/polym13111701
Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2018). Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers, 202(September), 186–202. https://doi.org/10.1016/j.carbpol.2018.09.002
Johar, N., Ahmad, I., & Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93–99. https://doi.org/10.1016/j.indcrop.2011.12.016
Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Ismadi, Damayanti, R., Subiyanto, B., Fatriasari, W., & Fudholi, A. (2021). A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 13, 2442–2458. https://doi.org/10.1016/j.jmrt.2021.06.014
Khan, A., Vijay, R., Singaravelu, D. L., Sanjay, M. R., Siengchin, S., Verpoort, F., Alamry, K. A., & Asiri, A. M. (2021). Extraction and characterization of natural fiber from Eleusine indica grass as reinforcement of sustainable fiber reinforced polymer composites. Journal of Natural Fibers, 18(11), 1742–1750. https://doi.org/10.1080/15440478.2019.1697993
Kumar, R., Ul Haq, M. I., Raina, A., & Anand, A. (2019). Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities. International Journal of Sustainable Engineering, 12(3), 212–220. https://doi.org/10.1080/19397038.2018.1538267
Kusuma, H. S., Permatasari, D., Umar, W. K., & Sharma, S. K. (2024). Sugarcane bagasse as an environmentally friendly composite material to face the sustainable development era. Biomass Conversion and Biorefinery, 14(21), 26693–26706. https://doi.org/10.1007/s13399-023-03764-2
Lee, C. H., Khalina, A., & Lee, S. H. (2021). Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review. Polymers, 13(3), 438. https://doi.org/10.3390/polym13030438
Manimaran, P., Senthamaraikannan, P., Murugananthan, K., & Sanjay, M. R. (2018). Physicochemical Properties of New Cellulosic Fibers from Azadirachta indica Plant. Journal of Natural Fibers, 15(1), 29–38. https://doi.org/10.1080/15440478.2017.1302388
Mohammadi, M., Ishak, M. R., & Sultan, M. T. H. (2024). Exploring Chemical and Physical Advancements in Surface Modification Techniques of Natural Fiber Reinforced Composite: A Comprehensive Review. Journal of Natural Fibers, 21(1). https://doi.org/10.1080/15440478.2024.2408633
Morin, S., Dumoulin, L., Delahaye, L., Jacquet, N., & Richel, A. (2021). Green composites based on thermoplastic starches and various natural plant fibers: Impacting parameters of the mechanical properties using machine‐learning. Polymer Composites, 42(7), 3458–3467. https://doi.org/10.1002/pc.26071
Mushtaq, B., Ahmad, F., Nawab, Y., & Ahmad, S. (2023). Optimization of the novel jute retting process to enhance the fiber quality for textile applications. Heliyon, 9(11), e21513. https://doi.org/10.1016/j.heliyon.2023.e21513
Naeem, M. A., Siddiqui, Q., Khan, M. R., Mushtaq, M., Wasim, M., Farooq, A., Naveed, T., & Wei, Q. (2022). Bacterial cellulose-natural fiber composites produced by fibers extracted from banana peel waste. Journal of Industrial Textiles, 51(1_suppl), 990S-1006S. https://doi.org/10.1177/1528083720925848
Paramasivam, A., Kanny, K., Turup Pandurangan, M., & Ramachandran, V. (2024). Mechanical behavior of glass fiber-reinforced hollow glass particles filled epoxy composites under thermal loading. Journal of Composite Materials, 58(18), 2027–2044. https://doi.org/10.1177/00219983241259113
Pokhriyal, M., Kumar, P., Sanjay, R., Rangappa, M., & Siengchin, S. (2023). Effect of alkali treatment on novel natural fiber extracted from Himalayacalamus falconeri culms for polymer composite applications. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-023-03843-4
Rao, H. J., Singh, S., & Janaki Ramulu, P. (2023). Characterization of a Careya Arborea Bast Fiber as Potential Reinforcement for Light Weight Polymer Biodegradable Composites. Journal of Natural Fibers, 20(1), 71–87. https://doi.org/10.1080/15440478.2022.2128147
Rao, H. J., Singh, S., Ramulu, P. J., Suyambulingam, I., Sanjay, M. R., & Siengchin, S. (2024). Isolation and characterization of a novel lignocellulosic fiber from Butea monosperma as a sustainable material for lightweight polymer composite applications. Biomass Conversion and Biorefinery, 14(20), 25317–25329. https://doi.org/10.1007/s13399-023-04631-w
Saadiah, H., Nadia, F., Zhu, J., & Wakisaka, M. (2021). Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydrate Polymers, 260(October 2020), 117789. https://doi.org/10.1016/j.carbpol.2021.117789
Samanth, M., & Bhat, K. S. (2023). Sustainable Chemistry for Climate Action Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites. Sustainable Chemistry for Climate Action, 3(February), 100034. https://doi.org/10.1016/j.scca.2023.100034
Sánchez-Safont, E. L., Aldureid, A., Lagarón, J. M., Gámez-Pérez, J., & Cabedo, L. (2018). Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Composites Part B: Engineering, 145, 215–225. https://doi.org/10.1016/j.compositesb.2018.03.037
Sankhla, S., Sardar, H. H., & Neogi, S. (2021). Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohydrate Polymers, 251(September 2020), 117030. https://doi.org/10.1016/j.carbpol.2020.117030
Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Effect of sugar palm-derived cellulose reinforcement on the mechanical and water barrier properties of sugar palm starch biocomposite films. BioResources, 11(2), 4134–4145. https://doi.org/10.15376/biores.11.2.4134-4145
Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
Suárez, L., Barczewski, M., Kosmela, P., Marrero, M. D., & Ortega, Z. (2023). Giant Reed ( Arundo donax L.) Fiber Extraction and Characterization for Its Use in Polymer Composites. Journal of Natural Fibers, 20(1), 1–15. https://doi.org/10.1080/15440478.2022.2131687
Tarique, J., Sapuan, S. M., & Khalina, A. (2022). Extraction and Characterization of a Novel Natural Lignocellulosic (Bagasse and Husk) Fibers from Arrowroot ( Maranta Arundinacea ). Journal of Natural Fibers, 19(15), 9914–9930. https://doi.org/10.1080/15440478.2021.1993418
Thapliyal, D., Verma, S., Sen, P., Kumar, R., Thakur, A., Tiwari, A. K., Singh, D., Verros, G. D., & Arya, R. K. (2023). Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. Journal of Composites Science, 7(12), 506. https://doi.org/10.3390/jcs7120506
Vinod, A., Vijay, R., Singaravelu, D. L., Sanjay, M. R. R., Siengchin, S., & Moure, M. M. (2019). Characterization of untreated and alkali treated natural fibers extracted from the stem of Catharanthus roseus. Materials Research Express, 6(8), 085406. https://doi.org/10.1088/2053-1591/ab22d9
Wan Nadirah, W. O., Jawaid, M., Al Masri, A. A., Abdul Khalil, H. P. S., Suhaily, S. S., & Mohamed, A. R. (2012). Cell Wall Morphology, Chemical and Thermal Analysis of Cultivated Pineapple Leaf Fibres for Industrial Applications. Journal of Polymers and the Environment, 20(2), 404–411. https://doi.org/10.1007/s10924-011-0380-7
Yousaf, L., Hou, D., Liaqat, H., & Shen, Q. (2021). Millet: A review of its nutritional and functional changes during processing. Food Research International, 142(17), 110197. https://doi.org/10.1016/j.foodres.2021.110197
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Isah Aliyu, Shaibu Lasisi, Rufai Dahiru

This work is licensed under a Creative Commons Attribution 4.0 International License.