DIVERSITY OF MICROORGANISMS IN BIOGAS PRODUCTION THROUGH CO-DIGESTION OF CATTLE DUNG, POULTRY WASTE, AND PALM OIL MILL EFFLUENT

Authors

  • Dr. (Mrs). Oluwaponmile Tosin Ojetokun
    Federal University of Agriculture, Abeokuta
  • Prof. Babatunde Saheed Bada
    Federal University of Agriculture, Abeokuta
  • Dr. (Mrs). Adijat Olabisi Atayese
    Federal University of Agriculture, Abeokuta
  • Dr. Olumide Joshua Ojetokun
    Ahmadu Bello University image/svg+xml

Abstract

This study assessed microbial diversity in biogas production from co-digestion of cattle dung, poultry waste, and palm oil mill effluent (POME). The experiment used a batch feeding system with 28-day retention, examining six substrate treatments: (CD), (PW), (CD:PW 1:1), (CD: POME 1:1), (PW: POME 1:1), and (CD: PW: POME 1:1:2). pH and temperature were monitored using a pH/temperature meter, and biogas volume was measured by water displacement. The data underwent descriptive and inferential statistical analyses. The optimal co-digestion treatment of PW: POME (1:1) yielded the highest cumulative biogas volume (8.33 dm³) and peak production of 3.80 dm³ on day 14. Initial substrate analysis showed total viable bacterial counts of 6.35 × 105, 2.17 × 105, and 0.27 × 105 CFU/mL for CD, PW, and POME, respectively, while total viable fungal counts were 2.05 × 105, 3.25 × 105, and 3.05 × 105 CFU/mL. Microbial analysis identified four suspected bacterial species (Bacillus aquimaris, B. cibi, B. altitudinis, and B. cereus), five fungal species (Curvularia lunata, Aspergillus flavus, A. nidulans, A. aculeatus, and Trichoderma viride), and two yeast species (Candida albicans and C. tropicalis), with Bacillus and Aspergillus being dominant genera. The biogas slurry is rich in nutrients, particularly potassium, indicating potential as a biofertilizer. The co-digestion process promoted a diverse microbial community dominated by Bacillus and Aspergillus species, which enhance substrate breakdown and biogas production.

Author Biographies

Dr. (Mrs). Oluwaponmile Tosin Ojetokun

Institute of Food Security, Environmental Resources, and Agricultural Research

Research Fellow II

Prof. Babatunde Saheed Bada

Department of Environmental Management and Toxicology, College of Environmental Resources Management, 

Professor

Dr. (Mrs). Adijat Olabisi Atayese

Center of Excellence in Agricultural Development and Sustainable Environment

Research Fellow I

Dr. Olumide Joshua Ojetokun

Department of Community Medicine

Masters Student

Dimensions

Ab Aziz, I. F., Man, H. C., Shukery, M. F. M., Jaffar, M. A. M., Shern, H. Y., Omar, R. and Jamali, N. S. (2025). A comparative study on the effects of co-digesting molasses with palm oil mill effluent (POME) or chicken manure on biomethane yield. E3S Web of Conferences, 636: 03002.

Abd, A. A. and Othman, M. R. (2022). Biogas upgrading to fuel grade methane using pressure swing adsorption: Parametric sensitivity analysis on an industrial scale. Fuel, 308:121986.

Abdelhakim, H. and Lamine, B. M. (2023). Study of the effect of some fungi on the yield of biogas. Journal of Pollution and Effects on Community Health, 2:1.

Abubakar, A. M., Silas, K. and Aji, M. M. (2022). An elaborate breakdown of the essentials of biogas production. Journal of Engineering Research and Sciences, 1(4): 93–118.

Adeyemo, I. A. and Waleola, O. A. (2016). Prevalence and incidence of Escherichia coli O157 in domestic goat dungs of Okitipupa township. Nigerian Journal of Pure & Applied Sciences, 29:2.

Akintokun, A. K., Abibu, W. A. and Oyatogun, M. O. (2017). Microbial dynamics and biogas production during single and co-digestion of cow dung and rice husk. Applied Environmental Research, 39(2): 6.

Akpan, J. F., Isong, I. A. and Asikong, E. B. (2019). Anaerobic digestion of organic waste for the production of biogas in Calabar, Cross River State, Nigeria. World News of Natural Science, 24: 9–21.

AOAC (2015). Official Methods of Analysis. 18th ed. Arlington: AOAC.

Arekemase, M. O. and Aweda, I. (2021). Production of biogas from mono and co-digestion of agricultural waste (cow dung, chicken dropping, and rice husk). Iraqi Journal of Science, 62(1): 45–60.

Asikong, B. E., Idire, S. O. and Tiku, D. R. (2016). Microorganisms associated with biogas production using vegetable (Telfairia occidentalis) wastes, banana peel and pig dung as substrates. British Microbiology Research Journal, 16(3): 1–12.

Ayedun, H., Adeyemo, A. I. and Ayadi, P. O. (2023). Biogas production from poultry waste modified with sawdust. Science World Journal, 18:2.

Azad, E., Fehr, K. H., Derakhshani, R., Forster, S., Acharya, E., Khafipour, E. and McGeough, T. M. (2020). Interrelationships of fiber-associated anaerobic fungi and bacterial communities in the rumen of bloated cattle grazing alfalfa. Microorganisms, 8(10):1543.

Bakraoui, M., Karouach, F., Ouhammou, B., Aggour, M., Essamri, A. and El Bari, H. (2020). Biogas production from recycled paper mill wastewater by UASB digester: Optimal and mesophilic conditions. Biotechnology Reports, 25: e00402.

Cheesbrough, M. (2006). District Laboratory Practice in Tropical Countries, part 2. Cambridge: Cambridge University Press. Pp 86-110.

Cole, S. D., Swiderski, M., Dietrich, J. and McGonigle, K. M. (2022). Comparison of a chromogenic urine culture plate system (UTid+) and conventional urine culture for canine and feline specimens. Veterinary Science, 16: 138–146.

Erraji, H., Asehraou, A., Tallou, A. and Rokni, Y. (2023). Assessment of biogas production and fertilizer properties of digestate from cow dung using household biogas digester. Biomass Conversion and Biorefinery, 14: 29001–29007.

Ezekoye, V., Offor, O. P., Agbogu, A. and Ezekoye, D. (2020). Methane production enhancement and comparative study of biodegradation of some plants and animal wastes. Indian Journal of Biochemistry & Biophysics, 57: 449–457.

Grando, R. L., de Souza Antune, A. M., da Fonseca, F. V., Sánchez, A., Barrena, R. and Font, X. (2017). Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development. Renewable and Sustainable Energy Reviews, 80: 44–53.

Gupta, K., Kumar, K., Rai, A. and Deepanshu, R. (2016). Current status of cow dung as a bioresource for sustainable development. Bioresources and Bioprocess, 3: 28.

Hii, K. L., Yeap, S. P. and Mashitah, M. D. (2012). Cellulase production from palm oil mill effluent in Malaysia: Economical and technical perspectives. Engineering in Life Sciences, 12(1): 7–18.

Horváth, I. S., Tabatabaei, M., Karimi, K. and Kumar, R. (2016). Recent updates on biogas production—a review. Biofuel Research Journal, 3(2): 394–402.

Jurgutis, L., Slepetiene, A., Volungevicius, J. and Amaleviciute-Volunge, K. (2020). Biogas production from chicken manure at different organic loading rates in a mesophilic full-scale anaerobic digestion plant. Biomass and Bioenergy, 141:105693.

Kazda, M., Langer, S. and Bengelsdorf, F. R. (2014). Fungi open new possibilities for anaerobic fermentation of organic residues. Energy, Sustainability and Society, 4: 6.

Langer, S. G., Ahmed, S. and Einfalt, D. (2020). Microbial population dynamics during anaerobic digestion of poultry manure: Impact of temperature and substrate. Bioresource Technology Reports, 11: 100491.

Leh-Togi, Z. S., Suanu, H. J., Mathew, I. O., Ogu, A. C., Tarimoboere, A., Bello, M., Ijah, U. J. and Abioye, O. P. (2024). The role of microbes in the production of biogas from poultry droppings. International Journal of Modelling & Applied Science Research, 3:9.

Nelson, K. L. and Murray, A. (2008). Sanitation for unserved populations: Technologies, implementation challenges, and opportunities. Annual Review of Environment and Resources, 33(1): 119–151.

Nvene, C., Suleiman, J. B., Ajayi, A. A. and Ebokaiwe, P. A. (2024). Assessment of biogas production potentials of palm oil mill effluent and cow dung substrates in anaerobic digester. World Journal of Advanced Research and Reviews, 22(2): 1279–1287.

Nwoke, O. A., Udealor, C. M., Uzoejinwa, B. B. and Ojike, O. (2024). Anaerobic co-digestion of brewery spent grain and cassava wastewater for the production of biogas using fixed dome biodigester. Agricultural Engineering International: CIGR Journal, 26(4): 129–141.

Ofon, U. A., Ndubuisi-Nnaji, U. U., Udofia, G. E., Fatunla, O. K. and Shaibu, S. E. (2024). Improving bioenergy production from anaerobic co-digestion of paper waste and chicken manure using coconut shell biochar. FUDMA Journal of Sciences (FJS), 8(6): 107–113.

Oyeleke, S. B., Onigbajo, H. O. and Ibrahim, K. (2003). Degradation of animal waste (cattle dung) to produce methane (cooking gas). In: Proceedings of the 5th Annual Conference on Animal Science of Nigeria (SAN), pp. 168–169.

Rabah, A. B., Baki, A. S., Hassan, L. G., Musa, M. and Ibrahim, A. D. (2010). Production of biogas using abattoir waste at different retention time. Science World Journal, 5(4): 23–26.

Raja, I. A. and Wazir, S. (2017). Biogas production: The fundamental processes. Universal Journal of Engineering Science, 5(2): 29–37.

Sárvári H. I., Tabatabaei, M., Karimi, K. and Kumar, R. (2016). Recent updates on biogas production—a review. Biofuel Research Journal, 3(2): 394–402.

Westerholm, M., Isaksson, S., Karlsson Lindsjö, O. and Schnürer, A. (2018). Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Applied Energy, 226: 838–848.

Wirth, R., Kovacs, E., Maroti, G., Bagi, Z., Rakhely, G. and Kovacs, K. L. (2012). Characterisation of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnology for Biofuels, 5: 41.

Ya’aba, Y. and Ramalan, A. S. (2020). Isolation, identification and characterization of some bacteria associated with biogas production from cow dung. Equity Journal of Science and Technology, 7(2): 91–99.

Yadvika, S., Santosh, S., Sreekrishnan, T. R., Kohli, S. and Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques. Bioresource Technology, 95: 1–10.

Yengong, F. L., Ngwabie, N. M., Tiku, D. T., Manga, V. E., Yuven, W. H., Ginyu, C. T. and Samson, R. H. (2025). Methane production from the digestion of different livestock manure and co-digestion with wastewater from palm oil production. Science World Journal, 19(1): 34–40.

Zainudin, M. H. M., Hassan, M. A., Shah, U. K. M., Abdullah, N., Tokura, M., Yasueda, H., Shirai, Y., Sakai, K. and Baharuddin, A. S. (2014). Bacterial community structure and biochemical changes associated with composting of lignocellulosic oil palm empty fruit bunch. Bioresources, 9(1): 316–335.

Published

29-12-2025

How to Cite

Ojetokun, O., Bada, B., Atayese, A. O., & Ojetokun, O. J. (2025). DIVERSITY OF MICROORGANISMS IN BIOGAS PRODUCTION THROUGH CO-DIGESTION OF CATTLE DUNG, POULTRY WASTE, AND PALM OIL MILL EFFLUENT. FUDMA JOURNAL OF SCIENCES, 9(12), 369-375. https://doi.org/10.33003/fjs-2025-0912-4173

How to Cite

Ojetokun, O., Bada, B., Atayese, A. O., & Ojetokun, O. J. (2025). DIVERSITY OF MICROORGANISMS IN BIOGAS PRODUCTION THROUGH CO-DIGESTION OF CATTLE DUNG, POULTRY WASTE, AND PALM OIL MILL EFFLUENT. FUDMA JOURNAL OF SCIENCES, 9(12), 369-375. https://doi.org/10.33003/fjs-2025-0912-4173