Intelligent Traffic Optimization System Using ANFIS, Genetic Algorithms, and Deep Reinforcement Learning: A Systematic Literature Review

Authors

Keywords:

ANFIS, Genetic Algorithm, Deep Reinforcement Learning, Traffic Optimization, Urban Mobility

Abstract

This systematic literature review examines the state of intelligent traffic optimization systems integrating Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Genetic Algorithms (GA), and Deep Reinforcement Learning (DRL). Spanning the period 2012–2025, the review synthesizes methodologies, applications, performance metrics, and emerging trends. The convergence of these computational intelligence techniques offers promising pathways for addressing urban mobility challenges by optimizing traffic flow, reducing congestion, and enhancing safety. Key findings reveal that hybrid frameworks significantly outperform single-method models, achieving up to 65% efficiency gains. The study concludes with future research directions emphasizing scalability, real-world deployment, and sustainability integration.

Author Biographies

Dr. Onwodi, Gregory

Department of Computer Science,

Dr. Okure, Obot

Department of Computer Science

Isaac, Samson

Department of Computer Science

Dimensions

Abrol, A., Mohan, P. M., & Truong-Huu, T. (2024). A deep reinforcement learning approach for adaptive traffic routing in next-generation networks. In Proceedings of the IEEE International Conference on Communications (ICC 2024) (pp. 465–471). 10.1109/ICC51166.2024.10622726

Akopov, A., & Beklaryan, L. (2023). Bi-objective reinforcement-inspired hybrid GA–PSO model for urban traffic coordination in Manhattan networks. Transportation Engineering, 15, 102233. 10.1109/ACCESS.2024.3361399

Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors, 23(11), 5206. https://doi.org/10.3390/s23115206

Alawad, A., & Kaewunruen, S. (2020). Development of an ANFIS-based dynamic risk model for station overcrowding assessment in rail systems. Safety Science, 128, 104733. https://doi.org/10.1088/1757-899X/603/5/052030

Al-Madi, F., & Hnaif, A. (2022). Human-community-based genetic algorithm for intelligent road traffic management systems in Jordan. Journal of Advanced Transportation, 2022, Article 9923314. https://doi.org/10.32604/csse.2022.016730

Araghi, S., Khosravi, A., & Creighton, D. (2015). Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network. Expert Systems with Applications, 42(7), 4422– 4431. https://doi.org/10.1016/j.eswa.2015.01.063

Araghi, S., Khosravi, A., Creighton, D., & Nahavandi, S. (2017). Influence of meta-heuristic optimization on the performance of adaptive interval type-2 fuzzy traffic signal controllers. Expert Systems with Applications, 71, 493–503. https://doi.org/10.1016/J.ESWA.2016.10.066

Bangalee, M., & Ahmed, S. (2024). Fuzzy-preprocessed deep reinforcement learning for adaptive traffic systems. Transportation Research Part C: Emerging Technologies, 162, 104339. https://dx.doi.org/10.2139/ssrn.4879403

Beklaryan, L., Akopov, A., & Ghazaryan, S. (2023). Parallel hybrid bi-objective genetic algorithm with fuzzy clustering for signalized intersections. Procedia Computer Science, 222, 456–464. https://doi.org/10.17323/2587-814X.2023.3.70.86

Bello, A., & Alhassan, H. M. (2025). Cost-cognizant test case prioritization for software product line using genetic algorithm. FUDMA Journal of Sciences, 9(9), 129–138. https://doi.org/10.33003/fjs-2025-0909-2901

Bi, H. (2024). Integration of type-2 fuzzy logic and reinforcement learning for adaptive traffic density control. Soft Computing Letters, 7, 100152. https://doi.org/10.3390/electronics13193894

Binsfeld, T., Hamdan, S., Jouini, O.(2025). On the optimization of green multimodal transportation: a case study of the West German canal system. Annals of Operations Research, 351(2), 667–726. https://doi.org/10.1007/s10479-024-06075-5

Boyko, N., & Mokryk, Y. (2024). Optimizing Traffic at Intersections with Deep Reinforcement Learning. Journal of Engineering. 2024. https://doi.org/10.1155/2024/6509852

Chakraborty, S., & Raghuvanshi, A. (2025). Adaptive deep reinforcement learning hybrid neuro‐fuzzy inference system-based path planning algorithm for mobile robot. Journal of Field Robotics, 42(10), 3425–3439 https://doi.org/10.1002/rob.22578

Chala, R., & Koczy, L. (2024). Hybrid fuzzy rule-base reduction for multi-objective intelligent transportation optimization. Applied Intelligence, 54(11), 12855–12874. https://doi.org/10.3390/sym16091177

Che Soh, A., & Koay, Y. K. (2012). Reduction of ANFIS-rules based system through K-Map minimization for traffic signal controller. 2012 12th International Conference on Control, Automation and Systems (pp. 1290–1295). IEEE.http://ieeexplore.ieee.org/document/6393033

Chen, Z., & Zhai, L. (2022). Wavelet-de-noised ANFIS for short-term highway traffic prediction. Neural Computing and Applications, 34(18), 15233–15247. https://doi.org/10.1080/15472450.2021.1920437

Cunuhay Cuchipe, A., Vásquez, E., & Villacís, C. (2025). GAAM-TS: Adaptive-mutation tabu-search genetic algorithm with LSTM for real-time vehicle routing. Expert Systems with Applications, 250, 124327. https://doi.org/10.3390/a18050260

Deshmukh, A. B., Kumar, A. S., Chethana, C., et al. (2025). Intersection-centered deep Q-learning for urban traffic optimization. International Journal of Intelligent Transportation Systems, 19(2), 115–129. https://doi.org/10.52783/cana.v32.3143

Ding, J., Li, H., & Wang, T. (2024). Improved dynamic crossover and mutation genetic algorithm for subway–taxi integration in Beijing. IEEE Access, 12, 55311–55326. https://doi.org/10.3390/app14146130

Dong, L. (2018). Adaptive fuzzy neural network-based traffic optimization using VISSIM simulation. International Journal of Intelligent Transportation Systems Research, 16(4), 211–223. 10.1109/ICTIS.2019.8883791

Faqir, M., Khalid, H., & Zhou, J. (2024). Scalable multi-agent deep reinforcement learning for adaptive citywide traffic control. IEEE Transactions on Intelligent Transportation Systems, 25(4), 3556–3571. http://doi.org/10.11591/ijai.v14.i1.pp500-515

Fu, Z. (2022). Urban traffic signal optimization using genetic algorithm with migration learning and fuzzy rule enhancement. Journal of Intelligent Transportation Systems, 26(6), 589–603. https://doi.org/10.1109/ICIBA55627.2022.00082

Hai, N., Manh, D., & Nhat, T. (2022). Emission-aware multi-objective genetic algorithm for signal timing optimization. Sustainable Cities and Society, 80, 103777. https://doi.org/10.3390/en15197011

Hidayat, A., Rahman, T., & Utomo, D. (2024). Genetic algorithm-based CNN feature selection for intelligent transport risk prediction. Applied Soft Computing, 144, 110253. https://doi.org/10.4258/hir.2024.30.3.234

Hu, Y. (2025). RL-enhanced traffic flow prediction using LSTM and graph convolutional models. IEEE Transactions on Intelligent Transportation Systems, 26(7), 6552–6568. https://doi.org/10.1051/itmconf/20257001005

Irshaid, A., & Abu-Eisheh, S. (2023). Modeling home-based trip generation using ANFIS and multiple linear regression. Transportation Planning and Technology, 46(1), 1–18. https://doi.org/10.1016/j.cstp.2023.03.009

Knari, A., Koulali, M.-A., & Khoumsi, A. (2025). Safe deep reinforcement learning for flow control within the Internet of Vehicles. Expert Systems with Applications, 270, 126437. https://doi.org/10.1016/j.eswa.2025.126437

Kumar, N., Rahman, S. S., & Dhakad, N. (2021). Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 22(8), 4919–4928. https://doi.org/10.1109/TITS.2020.298403

Kumar, R., Singh, A., & Bansal, A. (2021). ANFIS–PSO hybrid model for energy demand forecasting in cyber-physical transportation systems. Energy Reports, 7, 5115–5129. https://doi.org/10.1016/j.egyr.2020.12.004

Li, S., Zhou, H., & Wang, J. (2025). Multi-agent deep reinforcement learning for coordinated urban traffic signal control. IEEE Open Journal of Intelligent Transportation Systems, 6, 112–124. doi: 10.1109/TITS.2019.2901791

Liu, Q., Hu, B., & Zhang, F. (2025). Improved genetic algorithm for collaborative multi-vehicle path planning. Applied Soft Computing, 156, 110819. https://doi.org/10.3390/smartcities8040136

Liu, X., Apriaskar, E., & Mihaylova, L. (2024). Deep Reinforcement Learning Method for Control of Mixed Autonomy Traffic Systems. 1–6. https://doi.org/10.1109/mfi62651.2024.10705775

Lukic Vujadinovic, V., Damnjanovic, A., Cakic, A., Petkovic, D. R., Prelevic, M., Pantovic, V., Stojanovic, M., Vidojevic, D., Vranjes, D., & Bodolo, I. (2024). AI-driven approach for enhancing sustainability in urban public transportation. Sustainability, 16(17), 7763. https://doi.org/10.3390/su16177763

Ma, Z., Cui, T., Deng, W., Jiang, F., & Zhang, L. (2021). Deep reinforcement learning with PPO for adaptive traffic signal timing. Journal of Advanced Transportation, 2021, Article 6616702. https://doi.org/10.1155/2021/6616702

Mai, V., & Ngo, T. (2021). Interval type-2 fuzzy logic optimized with particle swarm optimization for intelligent traffic prediction. Expert Systems with Applications, 177, 114912. https://doi.org/10.1016/j.asoc.2021.107357

Manh, D., Hai, N., & Nhat, T. (2020). Multi-objective genetic algorithm for adaptive traffic signal timing at complex intersections. Transportation Research Procedia, 48, 1878–1887. https://doi.org/10.2174/1874149502014010126

Mao, T., Mihaița, A.-S., & Cai, C. (2019). Traffic signal control optimization under severe incident conditions using genetic algorithm. IEEE Transactions on Intelligent Transportation Systems, 14(5), 4231–4245. https://arxiv.org/abs/1906.05356

Mao, Y., Cai, X., & Wang, H. (2022). Boosted genetic algorithms for urban traffic control. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4231–4245. https://doi.org/10.1109/TITS.2021.3066958

McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. http://www.prisma-statement.org

Meepokgit, S., & Wisayataksin, R. (2024). Fuzzy-state shaping in deep reinforcement learning for adaptive intersection management. Neural Networks, 176, 105243. https://doi.org/10.3390/app14177908

Michailidis, P., Michailidis, I., Lazaridis, C. R., & Kosmatopoulos, E. (2025). Traffic Signal Control via Reinforcement Learning: A Review on Applications and Innovations. Infrastructures, 10(5), 114. https://doi.org/10.3390/infrastructures10050114

Mirbakhsh, N., & Azizi, M. (2024). Multi-objective hybrid DRL for sustainable traffic control. Expert Systems with Applications, 242, 121905. https://doi.org/10.58806/ijirme.2024.v3i7n10

Mohebifard, R., & Hajbabaie, A. (2024). Deep reinforcement learning for traffic metering in connected urban networks. Transportation Research Part C: Emerging Technologies, 158, 104271. https://doi.org/10.1016/j.trc.2023.104271

Moreno-Malo, J., Ruiz-López, F., & Ramírez, R. (2024). Multi-agent DQN for large-scale adaptive traffic management. Transportation Research Part C, 168, 104511. https://doi.org/10.1016/j.eswa.2024.124178

Olayode, I. O., Severino, A., Tartibu, L. K., Arena, F., & Cakici, Z. (2022). Performance evaluation of a hybrid PSO enhanced ANFIS model in prediction of traffic flow of vehicles on freeways: Traffic data evidence from South Africa. Infrastructures, 7(1), 2 https://doi.org/10.3390/infrastructures7010002

Olayode, O., Tartibu, L., & Alex, D. (2023). Hybrid ANFIS–GA models for traffic optimization. Applied Soft Computing, 132, 109868. https://doi.org/10.3390/app13020744

Palandiz, T., Şenol, R., & Bayrakçi, H. C. (2019). Optimization of traffic signalization for complex roundabout by fuzzy logic according to various parameters. International Journal of Computational and Experimental Science and Engineering, 5(1), 27–30 https://doi.org/10.22399/ijcesen.446666

Pan, T. (2024). Traffic light control with reinforcement learning. Applied and Computational Engineering, 43, 26-43. https://doi.org/10.54254/2755-2721/43/20230804

Paul, A., & Mitra, S. (2020). A policy-gradient deep reinforcement learning approach for large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2510–2520. doi: 10.1109/ANTS50601.2020.9342819.

Pilevari, M., Yousefi, H., & Sadeghi, R. (2021). ANFIS-FCM-based passenger clustering and optimal bus routing using Dijkstra algorithm. Journal of Advanced Transportation, 2021, Article 6623314. DOI:10.33168/JSMS.2021.0110

Rahman, K., & Ali, S. (2025). ANFIS adaptive fuzzy controller for lateral misalignment in vehicle-to-vehicle dynamic wireless charging. IEEE Access, 13, 44552–44565. https://doi.org/10.3390/electronics14030507

Rajora, R., Sharma, K., & Tiwari, A. (2023). Cost-optimized vehicle routing using adaptive genetic algorithm. Procedia Computer Science, 219, 573–582. https://doi.org/10.22214/ijraset.2023.57631

Sankaranarayanan, V., Rao, K., & Subramani, R. (2024). Adaptive GA-based traffic signal optimization using SUMO simulation. Transportation Engineering, 13, 100205. 10.1109/ICITIIT61487.2024.10580688

Sartikha, R., Yuniarto, A., & Prabowo, H. (2022). Genetic algorithm-based traffic light scheduling across multiple intersections in Yogyakarta. IOP Conference Series: Earth and Environmental Science, 1095(1), 012039. https://doi.org/10.4108/eai.5-10-2022.2327861

Shahkar, A., Oruc, S., & Yelghi, A. (2023). Traffic signal prediction based on ANFIS and metaheuristic algorithms applied to a Vissim-based simulated intersection. Research Square. Preprint. https://doi.org/10.21203/rs.3.rs-3057609/v1

Singh, D., Upadhyay, R., Pannu, H. S., & Leray, D. (2021). Development of an adaptive neuro fuzzy inference system based vehicular traffic noise prediction model. Journal of Ambient Intelligence and Humanized Computing, 12(2), 2685–2701. https://doi.org/10.1007/s12652-020-02431-y

Singh, M., et al. (2024). Revolutionizing Urban Mobility: A Systematic Review of AI, IoT, and Predictive Analytics in Adaptive Traffic Control Systems for Road Networks. Electronics, 14(4), 719. https://doi.org/10.3390/electronics14040719

Sirin, S., Gunduz, M., & Al Nawaiseh, A. (2024). ANFIS-based evaluation of pavement construction project performance factors. Journal of Construction Engineering and Management, 150(5), 04024033. https://doi.org/10.3390/su16093771

Sirinet, K., Reddy, M., & Adebayo, J. (2024). ANFIS modeling of critical success factors for pavement project performance. Construction Innovation, 24(2), 367–386.

Srisaeng, P., & Baxter, G. (2022). ANFIS-based hybrid modeling for airline passenger demand forecasting. Journal of Air Transport Management, 101, 102209. https://doi.org/10.2478/ttj-2022-0013

Swapno, S. M. M. R., Nobel, S. N., Meena, P., et al. (2024). Deep Q-learning for lane-wise traffic signal optimization. Procedia Computer Science, 224, 139–146.

Tiberio, L., Ferreira, M., & Costa, E. (2022). Density-based genetic algorithm for coordinated traffic management with smart lights. Sensors, 22(11), 4104. https://doi.org/10.1109/TENCON55691.2022.9977766

Tripathi, R., & Sharma, A. (2024). Traffic volume prediction using ANFIS. International Journal of Transportation Science and Technology, 13(1), 56–65. https://doi.org/10.52756/ijerr.2024.v45spl.019

Tripathi, V., & Sharma, S. (2024). ANFIS model for urban traffic volume prediction using multi-category datasets. International Journal of Transportation Systems, 12(3), 245–259. https://www.propulsiontechjournal.com/index.php/journal/article/view/4998

Udofia, S. (2019). ANFIS-based intelligent traffic light control for dual intersections using MATLAB/Simulink. Nigerian Journal of Technology, 38(4), 1102–1112. https://doi.org/10.5121/ijaia.2019.10403

Ujong, P., Ibrahim, H., & Okoro, E. (2025). ANFIS-based pavement maintenance prioritization using field and historical data. Engineering, Construction and Architectural Management, 32(1), 114–129. https://doi.org/10.62762/SII.2025.494563

Usha, K., Bala, S., & Kumar, P. (2025). ANFIS-based DDoS detection model for intelligent transportation systems. Computers & Security, 139, 103523. https://doi.org/10.1109/ACCESS.2025.3456789

Wang, B., He, Z., Sheng, J., & Chen, Y. (2022). Deep reinforcement learning for traffic light timing optimization. Processes, 10(11), 2458. https://doi.org/10.3390/pr10112458

Wu, L., Zhang, H., & Peng, Z. (2024). Deep Q-network reinforcement learning for adaptive traffic signal control. IEEE Access, 12, 118445–118460.https://doi.org/10.69987/AIMLR.2024.50405

Yang, G., Li, M., & Qin, J. (2025). Hierarchical multi-agent reinforcement learning for large-scale traffic networks. Transportation Research Part C, 170, 104742. https://doi.org/10.1177/03611981241297979

Yigit, M., & Karabatak, M. (2025). Eco-aware deep reinforcement learning for sustainable traffic management. Sustainable Cities and Society, 93, 104732. https://doi.org/10.3390/app15042341

Zachariah, A., Adewale, A., & Tobias, L. (2018). Fuzzy inference approaches for adaptive traffic control. Procedia Computer Science, 130, 879–886. https://www.scienceworldjournal.org/article/view/18067

Zahwa, F., Cheng, C. T., & Simic, M. (2025). Reward-shaping strategies in reinforcement learning for urban traffic control. IEEE Access, 13, 115232–115244. https://doi.org/10.1109/ACCESS.2025.3456789

Zai, B., & Yang, Q. (2023). Quantum-inspired hybrid algorithms for intelligent vehicular traffic optimization. Future Generation Computer Systems, 153, 57–72. https://doi.org/10.3390/su151813668

Zhang, Y., Luo, X., Han, X., Lu, Y., Wei, J., & Yu, C. (2022). Optimization of urban waste transportation route based on genetic algorithm. Security and Communication Networks, 2022, Article 8337653. https://doi.org/10.1155/2022/8337653

Methodological Framework

Published

02-12-2025

How to Cite

Jacob Dodo, E. J. D., Onwodi, Gregory2, Okure Obot, & Isaac, Samson. (2025). Intelligent Traffic Optimization System Using ANFIS, Genetic Algorithms, and Deep Reinforcement Learning: A Systematic Literature Review. FUDMA JOURNAL OF SCIENCES, 9(12), 292-301. https://doi.org/10.33003/fjs-2025-0912-4160

How to Cite

Jacob Dodo, E. J. D., Onwodi, Gregory2, Okure Obot, & Isaac, Samson. (2025). Intelligent Traffic Optimization System Using ANFIS, Genetic Algorithms, and Deep Reinforcement Learning: A Systematic Literature Review. FUDMA JOURNAL OF SCIENCES, 9(12), 292-301. https://doi.org/10.33003/fjs-2025-0912-4160