COMPARATIVE SURVIVAL MODELS OF PATIENTS WITH CHRONIC HEPATITIS B: A CASE STUDY AT THE FEDERAL MEDICAL CENTRE, NGURU

Authors

  • Ahmad Bala Doma
    Department of Mathematics, Faculty of Science, Federal University, Gashua, Nigeria
  • Abubakar Muhammad Auwal
    Department of Statistics and Data Analytics, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nigeria.
  • Nweze Obini Nwaze
    Department of Statistics and Data Analytics, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nigeria.
  • Saleh Ibrahim Musa
    Department of Statistics, Federal University of Lafia, Nigeria

Keywords:

Chronic Hepatitis B, Survival Analysis, Accelerated Failure Time Models, Lognormal Model

Abstract

Chronic Hepatitis B Virus (HBV) infection is a leading cause of cirrhosis and hepatocellular carcinoma worldwide, with a particularly high burden in Nigeria. Identifying prognostic factors and selecting the best-fitting survival model are critical for improving patient outcomes. A study of 150 patients with chronic HBV managed at Federal Medical Centre, Nguru, between 2019 and 2024 was analyzed. Survival probabilities were estimated using the Kaplan–Meier method. The Cox proportional hazards (CPH) model and four Accelerated Failure Time (AFT) models. Exponential, Weibull, Log-logistic, and Lognormal models were fitted and compared using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Covariates included age at diagnosis, gender, METAVIR fibrosis stage, baseline AST and ALT levels, viral load, comorbidities, and antiviral therapy.
The Kaplan–Meier curve revealed a gradual decline in survival. Model selection criteria identified the Lognormal AFT model as the best fit (AIC = 71.52; BIC = 101.63), outperforming both the Cox model and other parametric models. Significant predictors of reduced survival included older age (TR = 0.99, p < 0.01), advanced fibrosis (TR = 0.24, p < 0.001), elevated AST and ALT levels (p < 0.05), and comorbidities (TR = 0.26, p < 0.001). Antiviral therapy was strongly protective, increasing survival time by more than fourfold (TR = 4.01, p < 0.001). The Lognormal AFT model provides the most reliable characterization of survival among chronic HBV patients. Early diagnosis, fibrosis staging, and timely initiation of antiviral therapy are essential for improving survival outcomes and reducing HBV-related mortality in Northern Nigeria.

Dimensions

Adesina, O., Olusola, B., Oyedele, T., Olusola, A., & Olaleye, D. (2021). Hepatitis B infection in Nigeria: A systematic review and meta-analysis of data published between 2010 and 2019. BMC Infectious Diseases, 21(1), 1120. https://doi.org/10.1186/s12879-021-06800-6

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Allison, P. D. (2010). Survival analysis using SAS: A practical guide (2nd ed.). SAS Institute.

Chen, C. J., Yang, H. I., Su, J., Jen, C. L., You, S. L., Lu, S. N., & Wang, L. Y. (2016). Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA, 295(1), 65–73. https://doi.org/10.1001/jama.295.1.65

Collett, D. (2015). Modelling survival data in medical research (3rd ed.). Chapman & Hall/CRC.

Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187–220. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

Guo, S., & Carlin, B. P. (2004). Separate and joint modeling of longitudinal and event time data using standard computer packages. The American Statistician, 58(1), 16–24. https://doi.org/10.1198/0003130042854

Hosmer, D. W., Lemeshow, S., & May, S. (2008). Applied survival analysis: Regression modeling of time to event data (2nd ed.). Wiley.

Hosseini, S. M. H., Mahmoudi, M., Abadi, A., & Mohammad, K. (2008). Statistical comparison of survival models for analysis of cancer data. Iranian Journal of Public Health, 37(2), 85–93.

Hougaard, P. (2000). Analysis of multivariate survival data. Springer. https://doi.org/10.1007/978-1-4612-1304-8

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457–481. https://doi.org/10.1080/01621459.1958.10501452

Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data (2nd ed.). Springer.

Lawless, J. F. (2003). Statistical models and methods for lifetime data (2nd ed.). Wiley.

Lemoine, M., Shimakawa, Y., & Njie, R. (2015). Hepatitis B virus infection as a silent killer: The burden of chronic hepatitis B in West Africa. Tropical Medicine & International Health, 20(7), 946–948. https://doi.org/10.1111/tmi.12596

Liaw, Y. F., & Chu, C. M. (2009). Hepatitis B virus infection. The Lancet, 373(9663), 582–592. https://doi.org/10.1016/S0140-6736(09)60207-5

Lok, A. S. F., Zoulim, F., Dusheiko, G., & Ghany, M. G. (2016). Hepatitis B cure: From discovery to regulatory approval. Journal of Hepatology, 64(1), S117–S134. https://doi.org/10.1016/j.jhep.2016.01.018

Matthews, P. C., Geretti, A. M., Goulder, P. J. R., & Klenerman, P. (2014). Epidemiology and impact of HIV coinfection with hepatitis B and hepatitis C viruses in Sub-Saharan Africa. Journal of Clinical Virology, 61(1), 20–33. https://doi.org/10.1016/j.jcv.2014.05.018

Musa, B. M., Bussell, S., Borodo, M. M., Samaila, A. A., & Femi, O. L. (2015). Prevalence of hepatitis B virus infection in Nigeria, 2000–2013: A systematic review and meta-analysis. Nigerian Journal of Clinical Practice, 18(2), 163–172. https://doi.org/10.4103/1119-3077.151035

Nguyen, M. H., Thio, C. L., & Cohen, C. (2017). Management of chronic hepatitis B virus infection in the United States: An epidemiologic and clinical review. Annals of Internal Medicine, 167(11), 794–805. https://doi.org/10.7326/M17-1106

Oladele, E. O., Yahaya, T. O., Adewumi, O. O., David, B., & Oladipo, A. J. (2020). Distribution of ABO/Rhesus blood groups among Hepatitis B virus (HBV)-positive patients in Lagos, South-Western Nigeria. FUDMA Journal of Sciences (FJS), 4(3), 196-200. https://doi.org/10.33003/fjs-2020-0403-127

Ott, J. J., Stevens, G. A., Groeger, J., & Wiersma, S. T. (2012). Global epidemiology of hepatitis B virus infection: New estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine, 30(12), 2212–2219. https://doi.org/10.1016/j.vaccine.2011.12.116

Papatheodoridis, G. V., Chan, H. L. Y., Hansen, B. E., Janssen, H. L. A., & Lampertico, P. (2015). Risk of hepatocellular carcinoma in chronic hepatitis B: Assessment and modification with current antiviral therapy. Journal of Hepatology, 62(4), 956–967. https://doi.org/10.1016/j.jhep.2015.01.002

Pindar, W., Manu, J. M., & Chessed, G. (2023). Prevalence of Hepatitis B infection among pregnant women in Gombe, Gombe State, Nigeria. FUDMA Journal of Sciences, 7(4), 217–227. https://doi.org/10.33003/fjs-2023-0704-1920

Revill, P. A., Chisari, F. V., Block, J. M., & Lok, A. S. (2023). Antiviral therapy for chronic hepatitis B: Current status and future directions. Nature Reviews Gastroenterology & Hepatology, 20(1), 45–61. https://doi.org/10.1038/s41575-022-00744-y

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639. https://doi.org/10.1111/1467-9868.00353

Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: Extending the Cox model. Springer. https://doi.org/10.1007/978-1-4757-3294-8

Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis. Statistics in Medicine, 11(14–15), 1871–1879. https://doi.org/10.1002/sim.4780111409

World Health Organization (2021). Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. World Health Organization. https://www.who.int/publications/i/item/9789240027077

Yang, H. I., Yeh, S. H., Chen, P. J., Iloeje, U. H., Jen, C. L., Su, J., ... & Chen, C. J. (2019). Associations between gender, hepatitis B virus DNA levels and hepatocellular carcinoma in patients with chronic hepatitis B. Journal of Hepatology, 71(1), 117–125. https://doi.org/10.1016/j.jhep.2019.02.028

The Kaplan-Meier Survival Curve

Published

19-11-2025

How to Cite

Bala Doma, A., Muhammad Auwal, A., Obini Nwaze, N., & Ibrahim Musa, S. (2025). COMPARATIVE SURVIVAL MODELS OF PATIENTS WITH CHRONIC HEPATITIS B: A CASE STUDY AT THE FEDERAL MEDICAL CENTRE, NGURU. FUDMA JOURNAL OF SCIENCES, 9(12), 99-107. https://doi.org/10.33003/fjs-2025-0912-4158

How to Cite

Bala Doma, A., Muhammad Auwal, A., Obini Nwaze, N., & Ibrahim Musa, S. (2025). COMPARATIVE SURVIVAL MODELS OF PATIENTS WITH CHRONIC HEPATITIS B: A CASE STUDY AT THE FEDERAL MEDICAL CENTRE, NGURU. FUDMA JOURNAL OF SCIENCES, 9(12), 99-107. https://doi.org/10.33003/fjs-2025-0912-4158