NUTRIENT AND ANTINUTRIENT PROFILES OF THREE MICRONUTRIENT-RICH POWDERS FROM LOCAL VEGETABLES AND BEEF LIVER: FORMULATION, COMPOSITION AND SENSORY ACCEPTABILITY
DOI:
https://doi.org/10.33003/fjs-2025-0912-4144Keywords:
Micronutrient-rich powder, Hidden Hunger, Vegetables, Food Fortification, Malnutrition, Nutrient CompositionAbstract
Hidden hunger, together with foetal growth restriction, stunting, wasting, and poor breastfeeding, accounts for over 3.1 million child deaths annually. Young children are especially vulnerable due to high nutrient demands and limited dietary diversity. Food fortification is a cost-effective strategy to reduce deficiencies. Micronutrient-rich powders (MRPs) were formulated from green bean, carrots, beetroot, spinach, and cow liver. Nutrient and antinutrient compositions were analyzed using standard laboratory methods. Sensory evaluation was conducted on a 9-point hedonic scale. The MRPs (MRP-001, MRP-002, MRP-003) contained 14.84–16.50 g/100 g protein, 4.84–4.85 g/100 g fat, 7.05–7.87 g/100 g ash, and 48.99–53.24 g/100 g carbohydrate, with no significant differences (p < 0.05) in macronutrient content. Vitamin A (0.85–2.05 mg/g) and vitamin C (0.04–0.07 mg/g) were present in appreciable amounts, along with vitamins D, B9, and B12, which varied significantly across formulations. Minerals including iron (0.006–0.008 mg/g), potassium (16.85–20.02 mg/g), sodium (0.27–0.29 mg/g), calcium, and magnesium were also detected in good quantities. Antinutrient levels were within safe limit for oxalate (0.024-0.029mg/g), phytate (0.015-0.020mg/g) and tannins (0.27-0.49g/g). Sensory evaluation showed that MRP-003 was the most acceptable in taste (6.40), texture (7.20), flavour (6.00), colour (7.00), aroma (6.80) and overall acceptability (6.20). The study demonstrates the potential of locally sourced ingredients in producing nutrient-dense powders that may help prevent and manage childhood micronutrient deficiencies. These formulations could provide an affordable dietary supplement, particularly in low- and middle-income countries. Further research is required to assess long-term efficacy and safety.
References
Anand, T. S., Ahmad, T., Kumar, D., Devadason, I. P., Mendiratta, S. K., Verma, A. K., Biswas, A. K., Talukder, S., Dubal, Z. B., Das, A., Deshpande, A. D., Aruna, T. S., Thirupathi, Y., & Sen, A. R. (2024). Development of drying methodology for intact whole buffalo liver, its characterization, shelf life, and evaluation of palatability as pet treat. Journal of Food Processing and Preservation, 2024, Article 7842389. https://doi.org/10.1155/2024/7842389
AOAC. (2010). Official methods of analysis of the Association of Official Analytical Chemists (18th ed.). AOAC International.
Armitage, A. E., & Moretti, D. (2019). The importance of iron status for young children in low- and middle-income countries: A narrative review. Pharmaceuticals, 12(2), 59. https://doi.org/10.3390/ph12020059
Bailey, R. L., West, K. P., Jr., & Black, R. E. (2015). The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism, 66(Suppl. 2), 22–33. https://doi.org/10.1159/000371618
Beto, J. A. (2015). The role of calcium in human aging. Clinical Nutrition Research, 4(1), 1–8. https://doi.org/10.7762/cnr.2015.4.1.1
Bhupathiraju, S. N., Hu, F., & Braunstein, G. D. (2025). Protein-energy undernutrition (PEU). Merck Manual, Professional Version. https://www.merckmanuals.com/professional/nutritional-disorders/undernutrition/protein-energy-undernutrition-peu
Bintu, B. P., Falmata, A. S., Maryam, B. K., Raihatu, M. A., Chellube, Z., Hauwa, H., & Modu, S. (2019). Microbial, pH, titratable acidity, functional and sensory properties of complementary food blends formulated from maize, cowpea, bambara nut and groundnut. Food Science and Nutrition Studies, 3(2), 60–72. https://doi.org/10.22158/fsns.v3n2p60
Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., De Onis, M., … Uauy, R. (2013). Maternal and child undernutrition and overweight in low‐income and middle‐income countries. The Lancet, 382(9890), 427–451. https://doi.org/10.1016/S0140-6736(13)60937-X
Bumba, E. (2023). Development of ready-to-use therapeutic food (RUTF) using locally available foods and assessment of its effectiveness in rats (Unpublished master’s dissertation). Bayero University, Kano.
Chen, Y., Michalak, M., & Agellon, L. B. (2018). Importance of nutrients and nutrient metabolism on human health. Yale Journal of Biology and Medicine, 91(2), 95–103.
Clark, H., Coll-Seck, A. M., Banerjee, A., et al. (2020). A future for the world’s children? A WHO–UNICEF–Lancet Commission. The Lancet, 395(10224), 605–658. https://doi.org/10.1016/S0140-6736(19)32540-1
Cosme, F., Aires, A., Pinto, T., Oliveira, I., Vilela, A., & Goncalves, B. (2025). A comprehensive review of bioactive tannins in foods and beverages: Functional properties, health benefits, and sensory qualities. Molecules, 30(800), 1–25. https://doi.org/10.3390/molecules30040800
Costa, S., Sousa, P., & Pinheiro, R. (2021). Valorisation of vegetables from the Northern Portugal through drying: Study of the effect of different drying methods on texture, colour and physicochemical properties. Chemical Engineering Transactions, 87, 187–192. https://doi.org/10.3303/CET2187032
Cronin, P., Joyce, S. A., O'Toole, P. W., & O'Connor, E. M. (2021). Dietary fibre modulates the gut microbiota. Nutrients, 13(5), 1655. https://doi.org/10.3390/nu13051655
Deepak, M., Singh, A., & Verma, R. (2020). Nutritional and phytochemical composition of selected leafy vegetables: A review. Journal of Food Biochemistry, 44(9), e13384. https://doi.org/10.1111/jfbc.13384
De-Regil, L. M., Suchdev, P. S., Vist, G. E., Walleser, S., & Peña-Rosas, J. P. (2013). Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age: A review. Evidence-Based Child Health: A Cochrane Review Journal, 8(1), 112–201. https://doi.org/10.1002/ebch.1895
Egbi, G., Gbogbo, S., Mensah, G. E., Glover-Amengor, M., & Steiner-Asiedu, M. (2018). Effect of green leafy vegetables powder on anaemia and vitamin-A status of Ghanaian school children. BMC Nutrition, 4(27). https://doi.org/10.1186/s40795-018-0235-x
Food and Agriculture Organization. (2003). Food and nutrition paper 77: Food energy—Methods of analysis and conversion factors. Rome: FAO.
French, S. A., Tangney, C. C., Crane, M. M., Wang, Y., & Appelhans, B. M. (2019). Nutrition quality of food purchases varies by household income: The SHoPPER study. BMC Public Health, 19(231). https://doi.org/10.1186/s12889-019-6557-2
Gowrishankar, M., Blair, B., & Rieder, M. J. (2020). Dietary intake of sodium by children: Why it matters. Paediatrics & Child Health, 25(1), 47–61. https://doi.org/10.1093/pch/pxz153
Gupta, R. K., & Gangoliya, S. S. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52(2), 676–684. https://doi.org/10.1007/s13197-013-0978-y
Ijarotimi, O. S., & Keshinro, O. O. (2012). Effect of thermal processing on biochemical composition, antinutritional factors and functional properties of beniseed (Sesamum indicum) flour. American Journal of Biochemistry and Molecular Biology, 2(3), 175–182. https://doi.org/10.3923/ajbmb.2012.175.182
Institute of Medicine, Food and Nutrition Board. (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academies Press.
Inuwa, H. M., Aina, V. O., Aimola, B. G. I., & Amao, T. (2011). Comparative determination of antinutrient factors in groundnut oil and palm oil. Advances in Journal of Food Science and Technology, 3(4), 275–279.
James, A., & Matemu, A. (2018). Formulation of a novel mixed dried vegetables product for improved iron, zinc and vitamin A accessibility. Cogent Food & Agriculture, 4(1), 1531806. https://doi.org/10.1080/23311932.2018.1531806
Jha, R., Zhang, K., He, Y., Mendler-Drienyovszki, N., Magyar-Tábori, K., Quinet, M., Germ, M., Kreft, I., Meglič, V., Ikeda, K., Chapman, M. A., Janovská, D., Podolska, G., Woo, S.-H., Bruno, S., Georgiev, M. I., Chrungoo, N., Betekhtin, A., & Zhou, M. (2024). Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security. Trends in Food Science & Technology, 145, 104365. https://doi.org/10.1016/j.tifs.2023.104365
Koche, D. (2011). Trace element analysis and vitamins from an Indian medicinal plant Nepeta hindostana (Roth) Haine. International Journal of Pharmacy and Pharmaceutical Sciences, 3(1), 53–54.
Locks, L. M., Dahal, P., Pokharel, R., et al. (2019). Predictors of micronutrient powder (MNP) knowledge, coverage, and consumption during the scale‐up of an integrated infant and young child feeding (IYCF‐MNP) programme in Nepal. Maternal & Child Nutrition, 15(S5), e12712. https://doi.org/10.1111/mcn.12712
Muhimbula, H. S., Issa-Zacharia, A., & Kinabo, J. (2011). Formulation and sensory evaluation of complementary foods from local, cheap and readily available cereals and legumes in Iringa, Tanzania. African Journal of Food Science, 5(1), 26–31.
National Institutes of Health. (2021). Vitamin A, vitamin E, vitamin K, folic acid, and vitamin C fact sheets for health professionals. https://ods.od.nih.gov/factsheets
Nawiri, M. P., Nyambaka, H., & Murungi, J. I. (2013). Sundried cowpeas and amaranth leaves recipe improves β-carotene and retinol levels in serum and hemoglobin concentration among preschool children. European Journal of Nutrition, 52(2), 583–589. https://doi.org/10.1007/s00394-012-0360-2
O’Keefe, S. J. (2019). The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. The Lancet Gastroenterology & Hepatology, 4(12), 984–996. https://doi.org/10.1016/S2468-1253(19)30119-7
Ohanenye, I. C., Emenike, C. U., Mensi, A., Medina-Godoy, S., Jin, J., Ahmed, T., et al. (2021). Food fortification technologies: Influence on iron, zinc and vitamin A bioavailability and potential implications on micronutrient deficiency in sub-Saharan Africa. Scientific African, 11, e00667. https://doi.org/10.1016/j.sciaf.2021.e00667
Ojiewo, C., Keatinge, J. D. H., Hughes, J., Tenkouano, A., Nair, R., Varshney, R., Siambi, M., Monyo, E., Ganga-Rao, N. V. P. R., & Silim, S. (2015). The role of vegetables and legumes in assuring food, nutrition, and income security for vulnerable groups in Sub-Saharan Africa. World Medical & Health Policy, 7(3), 187–210. https://doi.org/10.1002/wmh3.152
Osendarp, S. J. M., Martinez, H., Garrett, G. S., Neufeld, L. M., De-Regil, L. M., Vossenaar, M., et al. (2018). Large-scale food fortification and biofortification in low- and middle-income countries: A review of programs, trends, challenges, and evidence gaps. Food and Nutrition Bulletin, 39(2), 315–331. https://doi.org/10.1177/0379572118774229
Palmer, B. F. (2015). Regulation of potassium homeostasis. Clinical Journal of the American Society of Nephrology, 10(6), 1050–1060. https://doi.org/10.2215/CJN.08580813
Ritchie, H. (2024, June 27). Three billion people cannot afford a healthy diet. Our World in Data. https://ourworldindata.org/diet-affordability
Rosanoff A, Weaver CM, Rude RK. (2012). Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev. 2012 Mar;70(3):153-64. https://doi.org/10.1111/j.1753-4887.2011.00465.x. Epub 2012 Feb 15. PMID: 22364157.
Sa’eedu, A. M., Haruna, H., Osagede, E. A., Daniel, C. S., Anda, S. A. D., Sulaiman, L. A., Ishaq, R. A., Ejembe, P. A., Agboola, F. O., & Sale, A. (2025). Formulation and evaluation of nutrients values and sensory properties of complementary diet from millet (Pennisetum glaucum), soybeans (Glycine max), groundnut (Arachis hypogaea), and date palm (Phoenix dactylifera L.) for children (6–24 months). Proceedings of the 11th Regional Food Science and Technology Summit (ReFoSTS), 8–23.
Salam RA, MacPhail C, Das JK, Bhutta ZA. (2013). Effectiveness of Micronutrient Powders (MNP) in women and children. BMC Public Health. Suppl 3(Suppl 3):S22. https://doi.org/10.1186/1471-2458-13-S3-S22. Epub 2013 Sep 17. PMID: 24564207; PMCID: PMC3847468.
Samantha, S., Giri, S., Parua, S., Nandi, D. K., Pati, B. R., & Mondal, K. C. (2004). Impact of tannic acid on the gastrointestinal microflora. Microbial Ecology in Health and Disease, 16(1), 32–34. https://doi.org/10.1080/08910600410029266
Schlemmer, U., Frølich, W., Prieto, R. M., & Grases, F. (2009). Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role, and analysis. Molecular Nutrition & Food Research, 53(2), 330–375. https://doi.org/10.1002/mnfr.200900099
Shertukde, S. P., Cahoon, D. S., Prado, B., Cara, K. C., & Chung, M. (2022). Calcium intake and metabolism in infants and young children: A systematic review of balance studies for supporting the development of calcium requirements. Advances in Nutrition, 13(5), 1529–1553. https://doi.org/10.1093/advances/nmac003
Smith, M. R., & Myers, S. S. (2018). Impact of anthropogenic CO₂ emissions on global human nutrition. Nature Climate Change, 8(10), 834–839. https://doi.org/10.1038/s41558-018-0253-3
Soofi S, Cousens S, Iqbal SP, Akhund T, Khan J, Ahmed I, Zaidi AK, Bhutta ZA. (2013). Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: a cluster-randomised trial. Lancet. 382(9886):29-40. https://doi.org/10.1016/S0140-6736(13)60437-7. Epub 2013 Apr 18. PMID: 23602230.
Sosanya, M. E., Nweke, O. G., & Ifitezue, L. C. (2018). Formulation and evaluation of ready-to-use therapeutic foods using locally available ingredients in Bauchi, Nigeria. European Journal of Nutrition & Food Safety, 8(1), 1–10. https://doi.org/10.9734/EJNFS/2018/39002
Stabler, S. P. (2020). Vitamin B12. In B. P. Marriott, D. F. Birt, V. A. Stallings, & A. A. Yates (Eds.), Present knowledge in nutrition (11th ed., pp. 257–271). Elsevier.
Sun, Y., Qu, Y., & Zhao, J. (2022). The application of tannic acid in orthopedics. Frontiers in Materials, 8, Article 567.
Thangaraj, P. (2016). Proximate composition analysis. In Phytochemical methods (pp. 49–59). Springer. https://doi.org/10.1007/978-3-319-26811-8_5
Ulya S. P, & Rina, A. (2022). Effect of temperature and drying time on physicochemical of beetroot (Beta vulgaris L. var. Rubra L.) flour. Anjoro: International Journal of Agriculture and Business, 3(2), 45–50. https://doi.org/10.31605/anjoro.v3i2.1672
UNICEF. (2021). Product specifications sheet: Multiple micronutrient powder (MNP) (Version 2.1) (Material No. S0000225). AF; revised by OC, PY, PSJ, & DK.
Volpe SL. (2013). Magnesium in disease prevention and overall health. Adv Nutr. 2013 May 1;4(3):378S-83S. https://doi.org/10.3945/an.112.003483. PMID: 23674807; PMCID: PMC3650510.
Von Grebmer, K., et al. (2014). Global hunger index: The challenge of hidden hunger. International Food Policy Research Institute.
World Health Organization. (2023). New WHA resolution to accelerate efforts on food micronutrient fortification. WHO.
Yangilar, F. (2013). The application of dietary fibre in the food industry: Structural features, effects on health and definition, obtaining and analysis of dietary fibre: A review. Journal of Food and Nutrition Research, 1(3), 13–23. https://doi.org/10.12691/jfnr-1-3-1
Yilmaz, H., & Yilmaz, A. (2025). Hidden hunger in the age of abundance: The nutritional pitfalls of modern staple crops. Food Science & Nutrition, 13(2), e4610. https://doi.org/10.1002/fsn3.4610
Yusuf, A. B., Sani, I., Emmanuel, O., & Adetunji, O. K. (2025). Optimization of a multi-micronutrient powder formulation incorporating Moringa oleifera: A sustainable approach to nutritional intervention. Direct Research Journal of Agriculture and Food Science, 13(2).
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Pasuma Garba Mohammed, Okere O. Shekins, Gideon Gyebi

This work is licensed under a Creative Commons Attribution 4.0 International License.