EFFECTS OF BANANA STALK BIOCHAR ON THE PHYSICAL AND CHEMICAL PROPERTIES OF SOILS

Authors

  • Badmus Tayo
    University of Calabar image/svg+xml
  • Oluwadamilare Oluwasegun Eludire
  • Glory Nyong Udoh
  • Ridwan Aderounmu
  • Saheed A Olaoye
  • Ayodele Ebenezer Ajayi
  • Oluwaseun Temitope Faloye
  • Idowu Bamidele Famuwagun
  • Paschal Ateb Ubi

Keywords:

biochar, soil amendment, sandy clay soil, sandy loam soil, banana stalk, physical properties, chemical properties

Abstract

Banana stalk biochar is a low-cost soil amendment with potential to improve degraded soils, yet its effects across contrasting textures remain under-reported. This study evaluated the effects of banana stalk biochar on the physical (bulk density, total porosity, water-retention capacity) and chemical properties (pH, organic carbon, exchangeable bases, available P, exchangeable acidity, CEC) of sandy loam (SL) and sandy clay (SC) soils. A randomized design with three biochar rates (0%, 3%, 6% w/w) and three replicates per soil was run for four weeks; soils received 500 mL water every 48 h, and data were analysed by two-way ANOVA with Tukey’s test (α = 0.05). Biochar significantly reduced bulk density (Soil: p < 0.001; Biochar: p = 0.002; interaction ns), from 1.82 g cm⁻³ (SC-0%) to 1.48 g cm⁻³ (SL-6%). Total porosity increased markedly (all main effects and interaction p < 0.001; R² = 99.88%), peaking at 0.322 cm³ cm⁻³ (SL-6%) versus 0.154 cm³ cm⁻³ (SC-0%). Water-retention capacity also rose with biochar (Soil and Biochar p < 0.001; interaction ns), from 93.67 mL (SL-0%) to 127.00 mL (SC-6%) with a strong model fit (R² = 95.93%). Chemically, biochar increased pH, organic carbon, available P, exchangeable K, Ca, and Mg, reduced exchangeable acidity, and raised CEC, with improvements more pronounced at 6% and generally stronger in SC than SL. Banana stalk biochar consistently enhanced soil structure and fertility across textures, indicating a practical pathway to improve water storage, nutrient retention, and physical quality in resource-constrained systems.

Dimensions

Afshar, M., & Mofatteh, S. (2024). Biochar for a sustainable future: Environmentally friendly production and diverse applications. Results in Engineering, 23, 102433. https://doi.org/10.1016/j.rineng.2024.102433

Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544. https://doi.org/10.1016/j.biortech.2012.05.042

Brtnicky, M., Datta, R., Holatko, J., Bielska, L., Gusiatin, Z. M., Kucerik, J., Hammerschmiedt, T., Danish, S., Radziemska, M., Mravcova, L., Fahad, S., Kintl, A., Sudoma, M., & Ahmed, N. (2021). A critical review of the possible adverse effects of biochar in the soil environment. Science of the Total Environment, 796, 148756. https://doi.org/10.1016/j.scitotenv.2021.148756

Chen, W., Meng, J., Han, X., Lan, Y., & Zhang, W. (2019). Past, present, and future of biochar. Biochar, 1, 75–87. https://doi.org/10.1007/s42773-019-00008-3

Cheng, S., Chen, T., Xu, W., Huang, J., Jiang, S., & Yan, B. (2020). Application research of biochar for the remediation of soil heavy metals contamination: A review. Molecules, 25(14), 3167. https://doi.org/10.3390/molecules25143167

Chia, C. H., Munroe, P., Joseph, S. D., Lin, Y., Lehmann, J., Muller, D. A., Xin, H. L., & Neves, E. (2012). Analytical electron microscopy of black carbon and microaggregated mineral matter in Amazonian dark earth. Journal of Microscopy, 245, 129–139. https://doi.org/10.1111/j.1365-2818.2011.03565.x

Das, S. K., Ghosh, G. K., Avasthe, R. K., & Sinha, K. (2021). Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. Journal of Environmental Management, 278, 111501. https://doi.org/10.1016/j.jenvman.2020.111501

Doran, J. W. (2002). Soil health and global sustainability: Translating science into practice. Agriculture, Ecosystems & Environment, 88, 119–127. https://doi.org/10.1016/S0167-8809(01)00246-8

He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks, and applications in China. Environmental Pollution, 252, 846–855. https://doi.org/10.1016/j.envpol.2019.05.151

Hillel, D. (2004). Introduction to environmental soil physics. Elsevier Academic Press.

International Biochar Initiative. (2013). Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (Version 1.1). IBI. https://biochar-international.org/wp content/uploads/2021/05/IBI_Biochar_Standards_V1.1.pdf

Lataf, A., Jozefczak, M., Vandecasteele, B., Viaene, J., Schreurs, S., Carleer, R., & Vandamme, D. (2022). The effect of pyrolysis temperature and feedstock on biochar agronomic properties. Journal of Analytical and Applied Pyrolysis, 168, 105728. https://doi.org/10.1016/j.jaap.2022.105728

Lehmann, J. (2009). Terra Preta Nova—Where to from here. In W. I. Woods, W. G. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins, & L. Rebellato (Eds.), Amazonian Dark Earths: Wim Sombroek’s Vision (pp. 473–486). Springer. https://doi.org/10.1007/978-1-4020-9031-8_25

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota. A review. Soil Biology and Biochemistry, 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

Maroušek, J., Strunecký, O., & Stehel, V. (2019). Biochar farming: Defining economically perspective applications. Clean Technologies and Environmental Policy, 21, 1389–1395. https://doi.org/10.1007/s10098-019-01737-7

Marris, E. (2006). Black is the new green. Nature, 442, 624–626. https://doi.org/10.1038/442624a

Mašek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E., & Hurst, P. (2013). Microwave and slow pyrolysis biochar Comparison of physical and functional properties. Journal of Analytical and Applied Pyrolysis, 100, 41–48. https://doi.org/10.1016/j.jaap.2012.11.015

Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties: A meta-analysis. Geoderma, 274, 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029

Olmo, M., Villar, R., Salazar, P., & Alburquerque, J. A. (2015). Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant and Soil, 399, 333–343. https://doi.org/10.1007/s11104-015-2695-y

Peng, H., Gao, P., Chu, G., Pan, B., Peng, J., & Xing, B. (2017). Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environmental Pollution, 229, 846–853. https://doi.org/10.1016/j.envpol.2017.06.079

Prasad, M., Tzortzakis, N., & McDaniel, N. (2018). Chemical characterization of biochar and assessment of nutrient dynamics by preliminary plant growth tests. Journal of Environmental Management, 216, 89–95. https://doi.org/10.1016/j.jenvman.2018.02.017

Qi, S., Degen, A., Wang, W., Huang, M., Li, D., Luo, B., Xu, J., Dang, Z., Guo, R., & Shang, Z. (2024). Systemic review for the use of biochar to mitigate soil degradation. Global Change Biology Bioenergy. https://doi.org/10.1111/gcbb.13147

Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/j.geoderma.2019.114055

Safarian, S. (2023). Performance analysis of sustainable technologies for biochar production: A comprehensive review. Energy Reports, 9, 4574–4593. https://doi.org/10.1016/j.egyr.2023.03.015

Sombroek, W., Kern, D., Rodrigues, T., Cravo, M. D. S., Jarbas, T. C., Woods, W., & Glaser, B. (2002). Terra Preta and Terra Mulata: Pre-Columbian Amazon kitchen middens and agricultural fields, their sustainability and replication. 17th World Congress of Soil Science, 14–21.

Sun, Z., Hu, Y., Shi, L., Li, G., Pang, Z., Liu, S., Chen, Y., & Jia, B. (2022). Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant, Soil and Environment, 68(6), 272–289. https://doi.org/10.17221/522/2021-PSE

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191–215. https://doi.org/10.1007/s11157-020-09547-9

Yuan, J. H., & Xu, R. K. (2011). The amelioration effects of low-temperature biochar generated from crop residues on an acidic Ultisol. Soil Use and Management, 27, 110–115. https://doi.org/10.1111/j.1475-2743.2010.00317.x

Zanutel, M., Garré, S., Sanglier, P., & Bielders, C. (2024). Biochar modifies soil physical properties mostly through changes in soil structure rather than through its internal porosity. Vadose Zone Journal, 23(1), e20301. https://doi.org/10.1002/vzj2.20301

Published

19-11-2025

How to Cite

Tayo, B., Eludire, O. O., Udoh, G. N., Aderounmu, R., Olaoye, S. A., Ajayi, A. E., Faloye, O. T., Famuwagun, I. B., & Ubi, P. A. (2025). EFFECTS OF BANANA STALK BIOCHAR ON THE PHYSICAL AND CHEMICAL PROPERTIES OF SOILS. FUDMA JOURNAL OF SCIENCES, 9(12), 91-98. https://doi.org/10.33003/fjs-2025-0911-4118

How to Cite

Tayo, B., Eludire, O. O., Udoh, G. N., Aderounmu, R., Olaoye, S. A., Ajayi, A. E., Faloye, O. T., Famuwagun, I. B., & Ubi, P. A. (2025). EFFECTS OF BANANA STALK BIOCHAR ON THE PHYSICAL AND CHEMICAL PROPERTIES OF SOILS. FUDMA JOURNAL OF SCIENCES, 9(12), 91-98. https://doi.org/10.33003/fjs-2025-0911-4118