DEPRESSION DETECTION USING MACHINE LEARNING ALGORITHMS: A SYSTEMATIC LITERATURE REVIEW
DOI:
https://doi.org/10.33003/fjs-2025-0910-4083Keywords:
Detection, Depression, Depression Detection, Deep Learning, DatasetAbstract
Depression is a common mental health challenge significantly affecting the global health community. Recently, researchers have conducted studies on applying machine learning methods for automated identification of depression symptoms among victims. Depression diagnosis now uses machine learning approaches to identify depression in social media posts. With these machine-learning techniques, researchers improve the detection and prediction of health-related diseases to support government and medical health professionals in their decision-making process. This paper aims to review and assess machine learning methods for the detection of depression. The present prediction systems used by the researchers meticulously found victims of depression using identification, detection, analysis, and prediction. Boolean keywords were used to search several journal databases and filters; the researchers chose and assessed thirty (30) papers, emphasising the application of machine learning methods. The results show that many studies used different models, such as SVM, RF, DT, K-NN, and NB, with various datasets to identify depression in people using clinical or social media information. Datasets utilised in the papers reviewed include those from Twitter, Facebook, Reddit, Survey, and DASS 21. There were few studies on prediction 17%, but most focused on early depression detection. The analysis showed a decline from 2022 to 2024, but the highest rise in machine learning research was in 2019.
References
Adarsh, V., Arun Kumar, P., Lavanya, V., & Gangadharan, G. R. (2023). Fair and Explainable Depression Detection in Social Media. Information Processing and Management, 60(1), 103168. https://doi.org/10.1016/j.ipm.2022.103168
Al Asad, N., Mahmud Pranto, M. A., Afreen, S., & Islam, M. M. (2019). Depression Detection by Analyzing Social Media Posts of User. 2019 IEEE International Conference on Signal Processing, Information, Communication & Systems (SPICSCON), 13–17.
Aldarwish, M. M., & Ahmad, H. F. (2017). Predicting Depression Levels Using Social Media Posts. Proceedings - 2017 IEEE 13th International Symposium on Autonomous Decentralized Systems, ISADS 2017, 277–280. https://doi.org/10.1109/ISADS.2017.41
Alhanai, T., Ghassemi, M., & Glass, J. (2018). Detecting Depression with Audio/Text Sequence Modeling of Interviews. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2018-Septe(September), 1716–1720. https://doi.org/10.21437/Interspeech.2018-2522
Alsagri, H. S., & Ykhlef, M. (2020a). Machine Learning-based Approach for Depression Detection in Twitter Using Content and Activity Features. In IEICE Transactions on Information and Systems (Vol. E103D, Issue 8). Institute of Electronics, Information and Communication, Engineers, IEICE. https://doi.org/https://doi.org/10.1587/transinf.2020EDP7023
Alsagri, H. S., & Ykhlef, M. (2020b). Machine Learning-Based Approach for Depression Detection in Twitter Using Content and Activity Features. IEICE Transactions on Information and Systems, E103D(8), 1825–1832. https://doi.org/10.1587/transinf.2020EDP7023
Amanat, A., Rizwan, M., Javed, A. R., Abdelhaq, M., Alsaqour, R., Pandya, S., & Uddin, M. (2022). Deep Learning for Depression Detection from Textual Data. Electronics (Switzerland), 11(5). https://doi.org/10.3390/electronics11050676
Angskun, J., Tipprasert, S., & Angskun, T. (2022). Big Data Analytics on Social Networks for Real-Time Depression Detection. Journal of Big Data, 9(1). https://doi.org/10.1186/s40537-022-00622-2
Arora, P., & Arora, P. (2019). Mining Twitter Data for Depression Detection. 2019 International Conference on Signal Processing and Communication (ICSC), 186–189.
Chatterjee, R., Gupta, R. K., & Gupta, B. (2021). Depression Detection from Social Media Posts Using Multinomial Naive Theorem. IOP Conference Series: Materials Science and Engineering, 1022(1). https://doi.org/10.1088/1757-899X/1022/1/012095
Chavan, J., Indore, K., Gaikar, M., & Shedge, R. (2019). Depression Detection and Prevention System by Analysing Tweets. Conference on Technologies for Future Cities (CTFC), 5(3), 116–119. http://ssrn.com/link/2019-CTFC.html
Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A Textual-Based Featuring Approach for Depression Detection Using Machine Learning Classifiers and Social Media Texts. Computers in Biology and Medicine, 135. https://doi.org/10.1016/j.compbiomed.2021.104499
Deshpande, M. (2017). Depression Detection using Emotion Artificial Intelligence. 2017 International Conference on Intelligent Sustainable Systems (ICISS), Iciss, 858–862.
Gadzama, W. A., Gabi, D., Argungu, M. S., & Suru, H. U. (2024). Personalized Medicine in Psychiatry The use of machine learning and deep learning models in detecting depression on social media : A systematic literature review. Personalized Medicine in Psychiatry, 45–46, 100125. https://doi.org/10.1016/j.pmip.2024.100125
Govindasamy, K. A. L., & Palanichamy, N. (2021). Depression Detection Using Machine Learning Techniques on Twitter Data. Proceedings - 5th International Conference on Intelligent Computing and Control Systems, ICICCS 2021, Iciccs, 960–966. https://doi.org/10.1109/ICICCS51141.2021.9432203
Grover, S., & Verma, A. (2016). Design for Emotion Detection of Punjabi Text using Hybrid Approach. International Conference on Inventive Computation Technologies, 2, 1–6.
Gui, T., Zhu, L., Zhang, Q., Peng, M., Zhou, X., Ding, K., & Chen, Z. (2019). Cooperative Multimodal Approach to Depression Detection in Twitter. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), 110–117.
Gupta, S., Goel, L., Singh, A., Prasad, A., & Ullah, M. A. (2022). Psychological Analysis for Depression Detection from Social Networking Sites. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/4395358
Haque, U. M., Kabir, E., & Khanam, R. (2021). Detection of Child Depression Using Machine Learning Methods. PLoS ONE, 16(12 December 2021). https://doi.org/10.1371/journal.pone.0261131
He, L., Niu, M., Tiwari, P., Marttinen, P., Su, R., Jiang, J., Guo, C., Wang, H., Ding, S., Wang, Z., Dang, W., & Pan, X. (2021). Deep Learning for Depression Recognition with Audiovisual Cues: A Review. Information Fusion, 80, 56–86. http://arxiv.org/abs/2106.00610
Islam, M. R., Kabir, M. A., Ahmed, A., Kamal, A. R. M., Wang, H., & Ulhaq, A. (2018). Depression Detection from Social Network Data Using Machine Learning Techniques. Health Information Science and Systems, 6(1), 1–12. https://doi.org/10.1007/s13755-018-0046-0
Islam, M. R., Kamal, A. R. M., Sultana, N., Islam, R., Moni, M. A., & Ulhaq, A. (2018). Detecting Depression Using K-Nearest Neighbors (KNN) Classification Technique. International Conference on Computer, Communication, Chemical, Material and Electronic Engineering, IC4ME2 2018, March 2019, 1–4. https://doi.org/10.1109/IC4ME2.2018.8465641
Jayanthi, K., Deepika, K., Rupanjali, K., Tharun, K., Chowdary, D., & Sai Eswar, K. (2022). Depression Detection using Machine Learning Algorithms. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT, 2(1). https://doi.org/10.48175/568
Katchapakirin, K., Wongpatikaseree, K., Yomaboot, P., & Kaewpitakkun, Y. (2018). Facebook Social Media for Depression Detection in the Thai Community. Proceeding of 2018 15th International Joint Conference on Computer Science and Software Engineering, JCSSE 2018, 1–6. https://doi.org/10.1109/JCSSE.2018.8457362
Keathley-Herring, H., Aken, E. Van, Gonzalez-Aleu, F., Deschamps, F., Letens, G., & Orlandini, P. C. (2016). Assessing the Maturity of a Research Area: Bibliometric Review and Proposed Framework Heather. Scientometrics, 109, 927–951. https://doi.org/10.1007/s11192-016-2096-x
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., Rush, A. J., Walters, E. E., Wang, A., Rovner, B., & Casten, R. (2003). The Epidemiology of Major Depressive Disorder. Evidence-Based Eye Care, 4(4), 186–187. https://doi.org/10.1097/00132578-200310000-00002
Khan, S., & Alqahtani, S. (2024). Hybrid Machine Learning Models to Detect Signs of Depression. Multimedia Tools and Applications, 83(13), 38819–38837. https://doi.org/10.1007/s11042-023-16221-z
Kumar, A., Sharma, A., & Arora, A. (2019). Anxious Depression Prediction in Real-time Social Data. SSRN Electronic Journal, 2019, 1–7. https://doi.org/10.2139/ssrn.3383359
Kumbhar, M., Dube, R., Barbade, M., Kulkarni, M., Konda, M., & Konkati, M. (2021). Depression Detection Using Machine Learning. International Conference on Smart Data Intelligence (ICSMDI 2021). https://ssrn.com/abstract=3851975
Li, X., Zhang, X., Zhu, J., Mao, W., Sun, S., Wang, Z., Xia, C., & Hu, B. (2019). Depression Recognition Using Machine Learning Methods with Different Feature Generation Strategies. Artificial Intelligence in Medicine, 99. https://doi.org/10.1016/j.artmed.2019.07.004
Nadeem, Moin, Horn, M., & Coppersmith, G. (2016). Identifying Depression on Twitter. 1–9. http://arxiv.org/abs/1607.07384
Priya, A., Garg, S., & Tigga, N. P. (2020). Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms. Procedia Computer Science, 167, 1258–1267. https://doi.org/10.1016/j.procs.2020.03.442
Rao, G., Zhang, Y., Zhang, L., Cong, Q., & Feng, Z. (2020). MGL-CNN: A Hierarchical Posts Representations Model for Identifying Depressed Individuals in Online Forums. IEEE Access, 8, 32395–32403. https://doi.org/10.1109/ACCESS.2020.2973737
Rehmani, F., Shaheen, Q., Anwar, M., Faheem, M., & Bhatti, S. S. (2024). Depression Detection with Machine Learning of Structural and Non-Structural Dual Languages. Healthcare Technology Letters, 11(4), 218–226. https://doi.org/10.1049/htl2.12088
Reyes-Rodríguez, M. L., Rivera-Medina, C. L., Cámara-Fuentes, L., Suárez-Torres, A., & Bernal, G. (2013). Depression Symptoms and Stressful Life Events Among College Students in Puerto Rico. Journal of Affective Disorders, 145(3), 324–330. https://doi.org/10.1016/j.jad.2012.08.010
Skaik, R., & Inkpen, D. (2020). Using Twitter Social Media for Depression Detection in the Canadian Population. ACM International Conference Proceeding Series, 109–114. https://doi.org/10.1145/3442536.3442553
Tadesse, M. M., Lin, H., Xu, B. O., & Yang, L. (2019). Detection of Depression-Related Posts in Reddit Social Media Forum. IEEE Access, 7(c), 44883–44893. https://doi.org/10.1109/ACCESS.2019.2909180
Tejaswini, V., Babu, K. S., & Sahoo, B. (2022). Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model. ACM Transactions on Asian and Low-Resource Language Information Processing. https://doi.org/10.1145/3569580
Van Laar, E., Van Deursen, A. J. A. M., Van Dijk, J. A. G. M., & Haan, J. De. (2017). The Relation Between 21st-Century Skills and Digital Skills or Literacy: A Systematic Literature Review. Computers in Human Behavior, 72, 577–588. https://doi.org/10.1016/j.chb.2017.03.010
Vandana, Marriwala, N., & Chaudhary, D. (2023). A Hybrid Model for Depression Detection Using Deep Learning. Measurement: Sensors, 25. https://doi.org/10.1016/j.measen.2022.100587
Vasha, Z. N., Sharma, B., Esha, I. J., Al Nahian, J., & Polin, J. A. (2023). Depression Detection in Social Media Comments Data Using Machine Learning Algorithms. Bulletin of Electrical Engineering and Informatics, 12(2), 987–996. https://doi.org/10.11591/eei.v12i2.4182
World Health Organization. (2022). Mental Disorders. https://www.who.int/newsroom/fact-sheets/detail/mentaldisorders Accessed: 2024-02-15
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Wadzani Aduwamai Gadzama, Ogah Stephen Ugbowu, Catherine Aaron Madunagu

This work is licensed under a Creative Commons Attribution 4.0 International License.