ENHANCED PHOTOCATALYTIC DEGRADATION OF NAPHTHALIMIDE-BASED ACID DYES USING Cu/Ag Co-DOPED TiO2 NANOCATALYST OPTIMIZED BY RESPONSE SURFACE METHODOLOGY

Authors

  • Amina Muhammad Mustapha
    Kaduna State University, Kaduna
  • Abdulraheem Giwa
    Ahmadu Bello University
  • Umar Ameuru Salami
    Ahmadu Bello University
  • Eli Danladi
    Federal University of Health Sciences, Otukpo

Keywords:

Photocatalytic degradation, Cu/Ag co-doped TiO2, Naphthalimide-based acid dyes, Response surface methodology (RSM), Mineralization efficiency

Abstract

The environmental persistence and toxicity of synthetic dyes, particularly emerging naphthalimide derivatives, necessitates advanced degradation technologies. This work investigates the photocatalytic degradation of two acid naphthalimide-based dyes using a nanocatalyst synthesized by co-doping TiO2 with Cu/Ag via the co-precipitation technique. The co-doped catalyst exhibited superior properties to pure TiO2, including a reduced crystallite size (28.54 nm), a red-shifted absorption edge (430 nm) corresponding to a narrower bandgap (2.24 eV), and a 61.4% increase in BET surface area (138.77 m2/g). Process optimization was carried out using response surface methodology (RSM) with a central composite design (CCD) to evaluate the effects of initial dye concentration, pH, catalyst dosage and reaction time. The developed models showed a strong fit (R2 > 0.93) and closely matched the experimental results, achieving high degradation efficiencies of up to 97.31% for Dye A and 97.01% for Dye B. Kinetic modelling revealed that both dyes followed pseudo-first-order kinetics, with rate constants of 0.0331 min⁻¹ and 0.0266 min⁻¹ and corresponding correlation coefficients (R2 = 0.9713 and 0.9852), indicating surface-limited degradation processes. Substantial mineralization was supported by the Chemical Oxygen Demand (COD) analysis and reductions of 70.0 % and 77.5 % of Dye A and Dye B respectively.

Dimensions

Akuma, D. A., Lund, H., Duong, T. T. H., Fufa, F., Strunk, J., & Steinfeldt, N. (2025). Optimization of Anatase TiO2 photocatalyst for diclofenac degradation by using response surface methodology. Applied Sciences, 15(3), 1401. https://doi.org/10.3390/app15031401

Ali, A. E., Chowdhury, Z. Z., Devnath, R., Ahmed, M. M., Rahman, M. M., Khalid, K., Wahab, Y. A., Badruddin, I. A., Kamangar, S., Hussien, M., Pallan, K. H., & Mitra, A. (2023). Removal of Azo Dyes from Aqueous Effluent Using Bio-Based Activated Carbons: Toxicity Aspects and Environmental Impact. Separations, 10(9), 506. https://doi.org/10.3390/separations10090506

Almhana, N., Naser, Z., Najjar, S. A., Al-Sharify, Z., & Nail, T. (2022). Photocatalytic Degradation of Textile Dye from Wastewater by using ZnS/TiO2 Nanocomposites Material. Egyptian Journal of Chemistry, 0(0), 0. https://doi.org/10.21608/ejchem.2022.125852.5588

Alqahtani, F. O. (2024). Advancing photocatalytic degradation under visible light with TiO2/g-C3N4 nanohybrid mechanistic insights. Journal of Saudi Chemical Society, 28(5), 101918. https://doi.org/10.1016/j.jscs.2024.101918

American Public Health Association (APHA) (2017) Standard methods for the examination of water and wastewater. 23rd edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC.

Ameuru, U. S., Yakubu, M. K., Bello, K. A., Nkeonye, P. O., & Halimehjani, A. Z. (2018). Synthesis of disperse dyes derived from 4-amino-N-decyl-1, 8-naphthalimide and their dyeing properties on polyester fabrics. Dyes and Pigments, 157, 190-197. https://doi.org/10.1016/j.dyepig.2018.04.050

Ameuru, U., Yakubu, M., Bello, K., Nkeonye, P., & Halimehjani, A. (2020). Synthesis and dyeing performance of some amphiphilic naphthalimide azo disperse dyes on polyester fabrics. Journal of the Serbian Chemical Society, 85(10), 1253-1264. https://doi.org/10.2298/jsc190123049a

Anwer, H., Mahmood, A., Lee, J., Kim, K., Park, J., & Yip, A. C. K. (2019). Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Research, 12(5), 955-972. https://doi.org/10.1007/s12274-019-2287-0

Batoo, K. M., Jassim, K. H., Qassem, T. A., Hussain, S., Hasson, W. T., Jalal, S. S., Ramadan, M. F., Hameed, S. M., Alawadi, A. H., & Alsaalamy, A. (2024). Novel magnetically separable g-C3N4/ TiO2/CuFe2O4 photocatalyst for efficient degradation of tetracycline under visible light irradiation: Optimization of process by RSM. Journal of Saudi Chemical Society, 28(3), 101871. https://doi.org/10.1016/j.jscs.2024.101871

Chauke, N. M., Mohlala, R. L., Ngqoloda, S., & Raphulu, M. C. (2024). Harnessing visible light: enhancing TiO2 photocatalysis with photosensitizers for sustainable and efficient environmental solutions. Frontiers in Chemical Engineering, 6. https://doi.org/10.3389/fceng.2024.1356021

Di Valentin, C., Pacchioni, G., & Selloni, A. (2005). Theory of carbon doping of titanium dioxide. Chemistry of Materials, 17(26), 6656-6665. https://doi.org/10.1021/cm051921h

Dinari, A., Mahmoudi, J., & School of Chemistry, Damghan University, Damghan, Iran. (n.d.). Response surface methodology analysis of the photodegradation of methyl orange dye using synthesized TiO2/Bentonite/ZnO composites. Advances in Environmental Technology, 1, 31-46. https://doi.org/10.22104/AET.2022.5204.1409

Gangadhar, T. G., Kumar, M. V. P., Thimmaiah, M. B., Jagadeesha, T., Math, M. M., & Saravanakumar, G. (2025). Photocatalytic performance of silver-doped titanium dioxide (TiO₂) nanoparticles for environmental applications. Materials Technology, 40(1). https://doi.org/10.1080/10667857.2025.2502960

Garcia-Segura, S., & Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 31, 1-35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005

Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 9(1), 1-12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

Giovannetti, R., Rommozzi, E., Zannotti, M., & D’Amato, C. A. (2017). Recent advances in graphene based TIO2 nanocomposites (GTiO2Ns) for photocatalytic degradation of synthetic dyes. Catalysts, 7(10), 305. https://doi.org/10.3390/catal7100305

Grabchev, I., Angelova, S., & Staneva, D. (2023). Yellow-Green and Blue fluorescent 1,8-Naphthalimide-Based chemosensors for metal cations. Inorganics, 11(2), 47. https://doi.org/10.3390/inorganics11020047

Ikram, M., Umar, E., Raza, A., Haider, A., Naz, S., Ul-Hamid, A., Haider, J., Shahzadi, I., Hassan, J., & Ali, S. (2020). Dye degradation performance, bactericidal behavior and molecular docking analysis of Cu-doped TiO2 nanoparticles. RSC Advances, 10(41), 24215-24233. https://doi.org/10.1039/d0ra04851h

Jiménez-Calvo, P., Caps, V., & Keller, V. (2021). Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges. Renewable and Sustainable Energy Reviews, 149, 111095. https://doi.org/10.1016/j.rser.2021.111095

Jorfi, S. (2018). Visible light photocatalytic degradation of Azo dye and a real textile wastewater using Mn, Mo, La/ TiO2/AC nanocomposite. Chemical and Biochemical Engineering Quarterly, 32(2), 215-227. https://doi.org/10.15255/cabeq.2017.1261

Kiwaan, H., Atwee, T., Azab, E., & El-Bindary, A. (2019). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. Journal of Molecular Structure, 1200, 127115. https://doi.org/10.1016/j.molstruc.2019.127115

Lee, H., Jang, H. S., Kim, N. Y., & Joo, J. B. (2021). Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions. Journal of Industrial and Engineering Chemistry, 99, 352-363. https://doi.org/10.1016/j.jiec.2021.04.045

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275-290. https://doi.org/10.1016/j.biori.2019.09.001

Li, N., Geng, D., & Zhou, J. (2021). Ag and Cu Nanoparticles Synergistically Enhance Photocatalytic CO2 Reduction Activity of B Phase TiO2. Catalysis Letters, 152(1), 124-138. https://doi.org/10.1007/s10562-021-03618-4

Mao, T., Zha, J., Hu, Y., Chen, Q., Zhang, J., & Luo, X. (2024). Research progress of TiO2 modification and photodegradation of organic pollutants. Inorganics, 12(7), 178. https://doi.org/10.3390/inorganics12070178

Mapukata, S., Shingange, K., & Mokhena, T. (2023). Review of the recent advances on the fabrication, modification and application of electrospun TiO2 and ZnO nanofibers for the treatment of organic pollutants in wastewater. Frontiers in Chemical Engineering, 5. https://doi.org/10.3389/fceng.2023.1304128

Mortazavian, S., Saber, A., & James, D. E. (2019). Optimization of Photocatalytic Degradation of Acid Blue 113 and Acid Red 88 Textile Dyes in a UV-C/TiO2 Suspension System: Application of Response Surface Methodology (RSM). Catalysts, 9(4), 360. https://doi.org/10.3390/catal9040360

Mustapha AM, Ameuru US, Giwa A, Danladi E (2025) Synthesis, characterisation, and dyeing performance of novel naphthalimide-based monoazo acid dyes on nylon 6.6 fabrics. UMYU Scientifica, 4(2), 457 - 474. https://doi.org/10.56919/usci.2542.048

Olya, M., Vafaee, M., & Jahangiri, M. (2015). Modeling of acid dye decolorization by TiO2-Ag2O nano-photocatalytic process using response surface methodology. Journal of Saudi Chemical Society, 21(6), 633-642. https://doi.org/10.1016/j.jscs.2015.07.006

Rajesh, C., Rajashekara, R., & Nagaraju, P. (2023). Response Surface Methodology (RSM) modelling for the photocatalytic optimization study of benzophenone removal using CuWO4/NiO nanocomposite. Journal of Environmental Health Science and Engineering, 21(1), 187-199. https://doi.org/10.1007/s40201-023-00852-3

Reza, K. M., Kurny, A., & Gulshan, F. (2015). Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Applied Water Science, 7(4), 1569-1578. https://doi.org/10.1007/s13201-015-0367-y

Saba, A. I., & Elsheikh, A. H. (2020). Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks. Process Safety and Environmental Protection, 141, 1-8. https://doi.org/10.1016/j.psep.2020.05.029

Saleh, I. A., Zouari, N., & Al-Ghouti, M. A. (2020). Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environmental Technology & Innovation, 19, 101026. https://doi.org/10.1016/j.eti.2020.101026

Sapcharoenkun, C., Kanpairee, P., Phaitakeaw, P., Punklahan, N., Butburee, T., Sangkhun, W., Treetong, A., Theanngern, K., Muensri, P., Wutikhun, T., Tanthanuch, W., Teeravechyan, S., Sae-Ueng, U., Kangwansupamonkon, W., Supcharoengoon, U., Leeladee, P., & Eksangsri, T. (2025). Synergistic Enhancement of Photocatalytic Oxidation in Wastewater Treatment using Cu/Ag Co-doped TiO2 Nanoparticles. Journal of Alloys and Compounds, 1036, 181788. https://doi.org/10.1016/j.jallcom.2025.181788

Shaki, H., Khosravi, A., & Gharanjig, K. (2017). Novel self-coloured polymers based on new fluorescent naphthalimide derivatives: synthesis, characterisation and photophysical properties. Pigment & Resin Technology, 46(3), 244-250. https://doi.org/10.1108/prt-07-2016-0080

Shi, Z., Song, Q., Göstl, R., & Herrmann, A. (2021). The Mechanochemical Release of Naphthalimide Fluorophores from β-Carbonate and β-Carbamate Disulfide-Centered Polymers. CCS Chemistry, 3(11), 2333-2344. https://doi.org/10.31635/ccschem.021.202101147

Slamet, N., Nasution, H. W., Purnama, E., Kosela, S., & Gunlazuardi, J. (2005). Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catalysis Communications, 6(5), 313-319. https://doi.org/10.1016/j.catcom.2005.01.011

Swaminaathan, P., Saravanan, A., Yaashikaa, P., & Vickram, A. (2024). Recent advances in photocatalytic degradation of persistent organic pollutants: Mechanisms, challenges, and modification strategies. Sustainable Chemistry for the Environment, 8, 100171. https://doi.org/10.1016/j.scenv.2024.100171

Tolosana-Moranchel, A., Pecharromán, C., Faraldos, M., & Bahamonde, A. (2020). Strong effect of light scattering by distribution of TiO2 particle aggregates on photocatalytic efficiency in aqueous suspensions. Chemical Engineering Journal, 403, 126186. https://doi.org/10.1016/j.cej.2020.126186

Tran, H. D., Nguyen, D. Q., T, P., DO, & Tran, U. N. P. (2023). Kinetics of photocatalytic degradation of organic compounds: a mini-review and new approach. RSC Advances, 13(25), 16915–16925. https://doi.org/10.1039/d3ra01970e

Vaiano, V., & De Marco, I. (2023). Removal of Azo Dyes from Wastewater through Heterogeneous Photocatalysis and Supercritical Water Oxidation. Separations, 10(4), 230. https://doi.org/10.3390/separations10040230

Vishani, D. B., & Shrivastav, A. (2021). Enzymatic decolorization and degradation of azo dyes. In Elsevier eBooks (pp. 419-432). https://doi.org/10.1016/b978-0-323-85657-7.00020-1

Yahya, N. A. A., Samir, O. M., Al-Ariki, S., Ahmed, A. a. M., & Swillam, M. A. (2023). Synthesis of novel antibacterial nanocomposite CuO/Ag-modified zeolite for removal of MB dye. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-40790-6

Zou, H., & Wang, Y. (2017). Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell. Bioresource Technology, 235, 167-175. https://doi.org/10.1016/j.biortech.2017.03.093

Published

29-09-2025

How to Cite

ENHANCED PHOTOCATALYTIC DEGRADATION OF NAPHTHALIMIDE-BASED ACID DYES USING Cu/Ag Co-DOPED TiO2 NANOCATALYST OPTIMIZED BY RESPONSE SURFACE METHODOLOGY. (2025). FUDMA JOURNAL OF SCIENCES, 9(10), 44-58. https://doi.org/10.33003/fjs-2025-0910-4046

How to Cite

ENHANCED PHOTOCATALYTIC DEGRADATION OF NAPHTHALIMIDE-BASED ACID DYES USING Cu/Ag Co-DOPED TiO2 NANOCATALYST OPTIMIZED BY RESPONSE SURFACE METHODOLOGY. (2025). FUDMA JOURNAL OF SCIENCES, 9(10), 44-58. https://doi.org/10.33003/fjs-2025-0910-4046