THE ROLE OF VITAMIN B6 IN GABA SYNTHESIS AND ITS IMPLICATIONS FOR NEUROLOGICAL HEALTH; A REVIEW

Authors

Keywords:

Vitamin B6, GABA Synthesis, Pyridoxal Phosphate, Neurological Disorders, Glutamic Acid Decarboxylase, Neurotransmitter, Epilepsy

Abstract

Vitamin B6, through its active form pyridoxal 5'-phosphate (PLP), is a vital cofactor for glutamic acid decarboxylase (GAD), the enzyme responsible for synthesizing gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the central nervous system. GABA plays a critical role in regulating neuronal excitability, mood, and cognitive function, and its dysregulation is implicated in neurological disorders such as epilepsy, anxiety, and cognitive impairment. This systematic review synthesizes evidence from preclinical and clinical studies to elucidate the biochemical mechanisms linking vitamin B6 to GABA synthesis, the neurological consequences of B6 deficiency, and the therapeutic potential of B6 supplementation. Findings indicate that vitamin B6 deficiency disrupts GABAergic signaling, contributing to seizures, peripheral neuropathy, and mood disorders, while supplementation can restore GABA homeostasis and mitigate these effects. However, interactions with other nutrients, such as vitamin B3, and metabolic conditions complicate these relationships, highlighting the need for further research into optimized, individualized therapeutic strategies.

Author Biography

Dr. Maryam Ibrahim

Head of Department
Department of Biochemistry and Molecular Biology
Federl University Dutsin-Ma

Dimensions

Baltrusch, S. (2021). The role of neurotropic B vitamins in nerve regeneration. BioMed Research International, 2021, Article 9968228. https://doi.org/10.1155/2021/9968228

Field, D. T., Cracknell, R. O., Eastwood, J. R., Scarfe, P., Williams, C. M., Zheng, Y., & Tavassoli, T. (2022). High-dose vitamin B6 supplementation reduces anxiety and strengthens visual surround suppression. Human Psychopharmacology: Clinical and Experimental, 37(6), Article e2852. https://doi.org/10.1002/hup.2852

Fricker, R. A., Green, E. L., Jenkins, S. I., & Griffin, S. M. (2018). The influence of nicotinamide on health and disease in the central nervous system. International Journal of Tryptophan Research, 11, Article 1178646918776658. https://doi.org/10.1177/1178646918776658

Higdon, J., Drake, V. J., Delage, B., & Gregory, J. F. (2024). Vitamin B6. Linus Pauling Institute, Oregon State University. https://lpi.oregonstate.edu/mic/vitamins/vitamin-B6

Jewett, B. E., & Sharma, S. (2024). Physiology, GABA. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK513311/

Jung, H. Y., Kim, D. W., Nam, S. M., Kim, J. H., Chung, J. Y., Won, M. H., Seong, J. K., & Yoon, Y. S. (2019). Role of pyridoxine in GABA synthesis and degradation in the hippocampus. Tissue and Cell, 61, 72-78. https://doi.org/10.1016/j.tice.2019.09.005

Kennedy, D. O. (2016). B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 8(2), Article 68. https://doi.org/10.3390/nu8020068

Parra, M., Stahl, S., & Hellmann, H. (2018). Vitamin B6 and its role in cell metabolism and physiology. Cells, 7(7), Article 84. https://doi.org/10.3390/cells7070084

Petty, F. (1995). GABA and mood disorders: A brief review and hypothesis. Journal of Affective Disorders, 34(4), 275-281. https://doi.org/10.1016/0165-0327(95)00025-I

Sadock, B. J., Sadock, V. A., & Ruiz, P. (2024). Kaplan & Sadock's comprehensive textbook of psychiatry (11th ed.). Wolters Kluwer.

Sahab, N. R. M., Subroto, E., Balia, R. L., & Utama, G. L. (2020). γ-Aminobutyric acid found in fermented foods and beverages: Current trends. Heliyon, 6(11), Article e05526. https://doi.org/10.1016/j.heliyon.2020.e05526

Suhail, M. (2019). Physiological, pathological, and pharmacological aspects of GABA. Journal of Neuroimmune Pharmacology, 14(2), 282-292.

Toney, M. D. (2011). Controlling reaction specificity in pyridoxal phosphate enzymes. Archives of Biochemistry and Biophysics, 516(2), 99-108. https://doi.org/10.1016/j.abb.2011.07.018

Vrolijk, M. F., Opperhuizen, A., Jansen, E. H., Hageman, G. J., Bast, A., & Haenen, G. R. (2020). The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. Toxicology In Vitro, 44, 206-212. https://doi.org/10.1016/j.tiv.2017.07.009

Wong, J. H., Tan, K., Toh, M., Wilson, P., Lim, J., George, S., Patwardhan, A., Wong, A., Singh, R., & Kavuru, S. (2025). Expert consensus on vitamin B6 therapeutic use for patients: Guidance on safe dosage, duration and clinical management. Drug, Healthcare and Patient Safety, 17, 97-108. https://doi.org/10.2147/DHPS.S499941

Xu, Y., Zhao, M., Han, Y., & Zhang, H. (2020). GABAergic inhibitory interneuron deficits in Alzheimer's disease: Implications for treatment. Frontiers in Neuroscience, 14, Article 660. https://doi.org/10.3389/fnins.2020.00660

Metabolic Pathway of GABA Production from the TCA Cycle

Published

19-11-2025

How to Cite

Ibrahim, M., Ikra Sani, M., & Ebri, Ubi, U. (2025). THE ROLE OF VITAMIN B6 IN GABA SYNTHESIS AND ITS IMPLICATIONS FOR NEUROLOGICAL HEALTH; A REVIEW. FUDMA JOURNAL OF SCIENCES, 9(12), 104-114. https://doi.org/10.33003/fjs-2025-0911-4024

How to Cite

Ibrahim, M., Ikra Sani, M., & Ebri, Ubi, U. (2025). THE ROLE OF VITAMIN B6 IN GABA SYNTHESIS AND ITS IMPLICATIONS FOR NEUROLOGICAL HEALTH; A REVIEW. FUDMA JOURNAL OF SCIENCES, 9(12), 104-114. https://doi.org/10.33003/fjs-2025-0911-4024

Most read articles by the same author(s)