DEVELOPMENT AND CHARACTERIZATION OF BIOFERTILIZER FROM CORN COB (Zea mays) WASTE: A SUSTAINABLE APPROACH FOR SOIL ENRICHMENT AND ENVIRONMENTAL MANAGEMENT
DOI:
https://doi.org/10.33003/fjs-2025-0911-4021Keywords:
Biofertilizer, Corn Cob, Fermentation, Optimization, SoilAbstract
This study developed and characterized a corn cob based biofertilizer as a sustainable alternative to chemical fertilizers and a means of agricultural waste valorization. Corn cobs were dried at 40 °C, milled to 20 µm, sterilized at 100 °C for 10 min, and inoculated with Bacillus spp., followed by fermentation at 37 °C for 744 h under conditions optimized using Central Composite Design (CCD). The design variables included pH (4.5–9.5), inoculum concentration (0.1–30%) and moisture content (25–100%). Proximate and mineral analyses confirmed that corn cobs provided a nutrient-rich substrate containing 43.5% carbohydrates, 3.4% crude protein, 35.6% fibre, 0.55% nitrogen, 1.5% potassium and 0.65% phosphorus. Optimization produced a biofertilizer containing 1.55% nitrogen, 1.63% potassium and 1.78% phosphorus, with a high microbial load of Bacillus (2.1 × 10⁶ CFU ml⁻¹). Soil trials conducted across sandy, loamy, and clay soils revealed significant improvements in soil fertility indices: There was an observed increase in pH, nutrient levels (nitrogen, phosphorus and potassium), Organic carbon, cation exchange capacity and also Bacillus counts in all the soil types before and after treatment, indicating robust microbial proliferation. Overall, these findings establish corn cobs as a viable carrier matrix for biofertilizer production. The resulting formulation is nutrient-enriched, microbially active, cost-effective and environmentally friendly, demonstrating significant potential for improving soil fertility and promoting sustainable agricultural practices.
References
REFERENCES
Abd El-Hamid, A. R., AL–Kamar, F. A. A., & Husein, M. E. (2013). Impact of Some Organic and Biofertilizers Soil Amendments on the Fertility Status, Some Soil Properties, and Productivity of Sandy Soils. Journal of Soil Sciences and Agricultural Engineering, 4(10), 989–1007. https://doi.org/10.21608/jssae.2013.52493
Agarwal, P., Gupta, R., & Gill, I. K. (2018). Importance of biofertilizers in agriculture biotechnology. Biologigal Research, 9(3), 1–13. www.scholarsresearchlibrary.com
Aghbashlo, M., Tabatabaei, M., Soltanian, S., & Ghanavati, H. (2019). Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis. Renewable Energy, 143, 64–76. https://doi.org/10.1016/j.renene.2019.04.109
Ahmad, R., Khalid, A., Arshad, M., Zahir, Z. A., & Mahmood, T. (2008). Effect of compost enriched with N and L-tryptophan on soil and maize. Agronomy for Sustainable Development, 28(2), 299–305. https://doi.org/10.1051/agro:2007058
Amoakwah, E., Frimpong, K. A., Okae-Anti, D., & Arthur, E. (2017). Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma, 307(June), 189–197. https://doi.org/10.1016/j.geoderma.2017.08.025
Basu, S., Rabara, R., & Negi, S. (2017). Towards a better greener future - an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene, 12, 43–49. https://doi.org/10.1016/j.plgene.2017.07.004
Dikr, W., & Belete, K. (2017). Review on The Effect of Organic Fertilizers, Biofertilizers and Inorganic Fertilizers (NPK) on Growth and Flower Yield of Marigold (Targets’ erecta L.). Academic Research Journal of Agricultural Science and Research, 5(3), 192–204. https://doi.org/10.14662/ARJASR2017.016
Ghabour, S. S., El Yazal, S. A. S., & Moawad, H. M. H. (2020). The Beneficial effect of bio-fertilizer together with ascorbic acid on roselle plants grown below different kinds of soil. Proceedings of the 15th International Conference on Agriculture & Horticulture, 2454(9), 7. https://doi.org/10.36344/ccijavs.2020.v02i09.001
Gogoi, D., Kotoky, U., & Hazarika, S. (2004). Effect of biofertilizers on productivity and soil characteristics in banana. Indian Journal of Horticulture, 61(4), 354–356.
Harsanti, E. S., Kusnoputranto, H., Suparmoko, M., Ardiwinata, A. N., Wihardjaka, A., & Kurnia, A. (2019). The usage of corn cob waste to remediate paddy soil contaminated by endosulfan. AIP Conference Proceedings, 2120(February). https://doi.org/10.1063/1.5115671
Haruna, A. I., Ameh, D. P., Mohammed, A. A., & Umar, U. S. (2017). Uranium Mineralization in Gubrunde Horst , Upper Benue Trough , North-East , Nigeria. Journal of Geosciences and Geomatics, 5(3), 136–146. https://doi.org/10.12691/jgg-5-3-5
Ibrahimpašić, J., Jogić, V., Džaferović, A., Makić, H., Toromanović, M., & Dedić, S. (2021). The Potential of Corn (Zea Mays) forPhytoremediation of Soil Contaminated with Heavy Metals. Technologica Acta, 14(2), 31–38. http://tf.untz.ba/technologica-acta*https://hrcak.srce.hr/ojs/index.php/technologicaacta
Khosro, M., & Yousef, S. (2012). Bacterial Biofertilizers for Sustainable Crop Production : a Review. Journal of Agricultural and Bological Science, 7(5), 307–316.
Kumari, R., & Singh, D. P. (2020). Nano-biofertilizer: An Emerging Eco-friendly Approach for Sustainable Agriculture. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(4), 733–741. https://doi.org/10.1007/s40011-019-01133-6
Lawal, T. E., & Babalola, O. O. (2014). Relevance of Biofertilizers to Agriculture. Journal of Human Ecology, 47(1), 35–43. https://doi.org/10.1080/09709274.2014.11906737
Leaungvutiviroj, C., Ruangphisarn, P., Hansanimitkul, P., Shinkawa, H., & Sasaki, K. (2010). Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Bioscience, Biotechnology and Biochemistry, 74(5), 1098–1101. https://doi.org/10.1271/bbb.90898
Lim, S. F., & Matu, S. U. (2015). Utilization of agro-wastes to produce biofertilizer. International Journal of Energy and Environmental Engineering, 6(1), 31–35. https://doi.org/10.1007/s40095-014-0147-8
Mahdian, S., Mohidin, H., Man, S., Kanang, K. D., & Ali, A. S. (2021). Growth Performance of Sweet Corn (Zea mays) on the Mineral Soil Amended with Sago Waste Biochar. Scientific Research Journal, 18(1), 43. https://doi.org/10.24191/srj.v18i1.11395
Mohammad, H., Golabi, M., Denney, J., & Iyekar, C. (2004). Use of Composted Organic Wastes As Alternative To Synthetic Fertilizers for. ISCO 2004 - 13th International Soil, 234, 1–6. http://tucson.ars.ag.gov/isco/isco13/PAPERS F-L/GOLABI.pdf
Musa, D. D., Muhammad, F. T., & Bala, A. S. (2023). Effect of aqueous plant extracts and inorganic fertilizer on the germination, growth and development of maize (Zea mays). FUDMA Journal of Sciences, 7(5), 266–269. https://doi.org/10.33003/fjs-2023-0705-2022
Ngampimol, H., & Kunathigan, V. (2008). The Study of Shelf Life for Liquid Biofertilizer from Vegetable Waste. Assumption University Journal of Technology, 11(4), 204–208.
Noll, C. E. (2010). The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Advances in Space Research, 45(12), 1421–1440. https://doi.org/10.1016/j.asr.2010.01.018
Olade, M. A. (2019). Uranium Occurrences and Exploration Potential of Nigeria. Achievers Journal of Scientific Research, 2(2), 1–24. www.achieversjournal.org%0Awww.achieversjournals.org
Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., Pereira, S., Cunha, V. M. C. F., & Varum, H. (2012). Corn cob lightweight concrete for non-structural applications. Construction and Building Materials, 34, 346–351. https://doi.org/10.1016/j.conbuildmat.2012.02.043
Republic, F. (2014). Uranium exploration in nigeria. November.
Saidia, P. S. (2023). The Impact of Biochar and Animal Manure on Soil Properties, Yield, and Quality of Crops. April, 183–196. https://doi.org/10.1007/978-981-19-4120-7_7
Sanchez, P. A., Shepherd, K. D., Soule, M. J., Place, F. M., Buresh, R. J., Izac, A. M. N., Uzo Mokwunye, A., Kwesiga, F. R., Ndiritu, C. G., & Woomer, P. L. (2015). Soil Fertility Replenishment in Africa: An Investment in Natural Resource Capital. Replenishing Soil Fertility in Africa, 1–46. https://doi.org/10.2136/sssaspecpub51.c1
Shaheen, A., & Turaib Ali Bukhari, S. (2018). Potential of sawdust and corn cobs derived biochar to improve soil aggregate stability, water retention, and crop yield of degraded sandy loam soil. Journal of Plant Nutrition, 41(20), 2673–2682. https://doi.org/10.1080/01904167.2018.1509092
Singh, S., Singh, V., DATT Shukla, R., Datt Shukla, R., Singh, K., & Virendra Singh, C. (2018). Effect of fertilizer levels and Bio-fertilizer on green cob yield of corn (Zea mays L.). International Journal of Chemical Studies, 6(2), 2188–2190. https://www.researchgate.net/publication/324154925
Smart, R., & White, R. (2023). Soil fertility. The Oxford Companion to Wine: Fifth Edition, 688. https://doi.org/10.1201/9780203739341
Stewart, Z. P., Pierzynski, G. M., Middendorf, B. J., & Vara Prasad, P. V. (2020). Approaches to improve soil fertility in sub-Saharan Africa. Journal of Experimental Botany, 71(2), 632–641. https://doi.org/10.1093/jxb/erz446
Vassilev, N., Vassileva, M., Lopez, A., Martos, V., Reyes, A., Maksimovic, I., Eichler-Löbermann, B., & Malusà, E. (2015). Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Applied Microbiology and Biotechnology, 99(12), 4983–4996. https://doi.org/10.1007/s00253-015-6656-4
Zych, D. (2008). THE VIABILITY OF CORN COBS AS by. 1–25.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 SERGIUS T UGWUEKE, Daniel D Musa, Alexander A. Bem, Ehime Itama

This work is licensed under a Creative Commons Attribution 4.0 International License.