ADOMIAN DECOMPOSITION METHOD FOR STEADY FREE CONVECTIVE COUETTE FLOW IN A VERTICAL CHANNEL WITH NON-LINEAR THERMAL RADIATION, DYNAMIC VISCOSITY AND DYNAMIC THERMAL CONDUCTIVITY EFFECTS

Authors

  • Yusuf A. Bichi
  • O. A. Ajibade
  • B. K. Jha
  • H. M. Jibril

DOI:

https://doi.org/10.33003/fjs-2020-0403-401

Keywords:

Natural convection; Couette flow; Steady flow; Variable Fluid Properties; Nonlinear Thermal Radiation

Abstract

In this paper, we investigate steady free convective Couette flow in a vertical channel with nonlinear thermal radiation, dynamic viscosity and dynamic thermal conductivity effects. The investigation is motivated by the studies of some researchers which assumed linear thermal radiation and constant fluid properties. However, this is uncalled for; as these assumptions do not reflect true behavior of the flow. For instance; increase in temperature affects fluid viscosity, thermal conductivity thereby changing the transport phenomenon. Here; the investigation considers both the fluid viscosity and thermal conductivity to be dependent on temperature with the thermal radiation adopting nonlinear form. Due to this reasons, the associated flow equations are highly nonlinear and exhibit no analytical solution and therefore require the use of Adomian decomposition method (ADM) of solution. The attained ADM solution is then coded into computer algebra package of mathematica where results under the parameters of interest are presented and discussed. Results of the investigation show that raising the thermal radiation leads to corresponding rise in both the velocity and temperature of the fluid in the channel. Furthermore; lessening the viscosity and thermal conduction of the fluid were identified to escalate both velocity and temperature of the fluid.

References

Agada, G. O. A., Abdullahi, I. O., Aminu, M., Odugbo, M., Chollom, S.C., Okeke, L.A. & Okwori, A. E. J. (2014). Risk factors Associated with Salmonella species Contamination of Commercial Poultry Farms in Jos, Plateau State, Nigeria. International Journal of Current Research, 6 (4), 6292-6301.

Abase, M., Davies, S., Oyekunle, M. A., Ojo, O.E., Fasina, F.O. & Akinduti, P.A. (2010).

Observation on the Occurrence and Transmission Pattern of Salmonella gallinarum in Commercial Poultry in Ogun State, South Western Nigeria. African Journal of Microbiology

Research, 4(9):796-800.

Antunes, P., Réu, C., Carlos, J. S., Peixe, L.& Pestana, N. (2003). Incidence of Salmonella from Poultry Products and their Susceptibility to Antimicrobial Agents. International Journal of Food Microbiology, 82(2), 97-103

Bada-Alambedji, A., Fofana, M., Seydi, A. & Akakpo, J. (2006). Antimicrobial resistance of Salmonella isolated from poultry carcasses in Dakar (Senegal). Braz J Microbiol, 37 510-515

Barbara, M. L., Baird-Parker, T.C., & Grahame, W.G. (2000). The Microbiological Safety and Quality of Food (II). Gaithersburg, Maryland, USA: Aspen Publishers Inc. p.1234.

Clin, J. & Diagn, R. (2013). Revised Ciprofloxacin Breakpoints for Salmonella: Is it Time to Write an Obituary? Journal of clinical and diagnostic research. 7(11): 2467–2469.

doi: 10.7860/JCDR/2013/7312.3581

Clinical and Laboratory Standards Institute (CLSI). (2018). Performance Standards for Antimicrobial Susceptibility Testing. M100, 28th ed. Wayne (PA), Wayne (PA): the Institue.

Enabulele, S. A., Peace, O. Amune, O. A. & Wakili, T. A. (2010). Antibiograms of Salmonella Isolates from Poultry Farms in Ovia North East local government area, Edo State,

Nigeria. Agric. Biol. J. N. Am. 1(6): 1287-1290

The European Committee on Antimicrobial Susceptibility Testing (EUCAST). (2019). Definitions of clinical breakpoints and epidemiological cut off values. Modified definitions valid from 1 January, 2019.

Fair, R. J. & Tor Y. (2014). Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Med. Chem. 6:14459. doi: 10.4137/PMC.S14459.

Fagbamila I. O; Barco L; Mancin M; Kwaga J; Ngulukun S.S; Zavagnin P; Lettini, A. A., Lorenzetto, M; Abdu P. A; Kabir, J., Umoh, J., Ricci, A. & Muhamad, M. (2017).

Salmonella serovars and their Distribution in Nigerian Commercial Chicken layer Farms. PLoS ONE 12(3): e0173097.

Garba, A., Bolajoko, B. M., Barde, A. Ahmed, I., Sa’adatu, I. Agang, A. S., Abdullahi, H. A., Bakari, U. I. J., Uraki, A. T., Abdurrahman, A. & Goji, J. N. (2010). The Threat of Salmonellosis to Commercial Poultry Production in Adamawa state, Nigeria. Sokoto Journal of Veterinary Sciences, 8(1&2): 50-52. http://dx.doi.org/10.1007/s11250-014-0680-8

Ifeanyi, C. I.C., Bassey, E. B., Ikeneche, N. F., Isu, R. N. & Akpa, A. C. (2013). Prevalence and Antimicrobial Susceptibility of Salmonella Specie Associated with Childhood Acute Gastroenteritis in Federal Capital Territory Abuja, Nigeria. British Microbiology Research Journal, 3: 2231- 0886.

Jakirul, M.D. I., Mahbub-E-Elahi1, A.T.M., Ahmed1, T., Md. Kamrul, M. D. H. & Jones, B.D. (2016): Isolation and Identification of Salmonella spp. from Broiler and their Antibiogram study in Sylhet, Bangladesh. Journal of Applied Biology & Biotechnology,4 (03), 046-051. DOI: 10.7324/JABB.2016.40308.

Jones, M.A., Wigley, P., Page, K.L., Hulme, S.D. and Barrow, P.A. (2001). Salmonella enterica serovar Gallinarum requires the Salmonella Pathogenicity Island 2 type III Secretion System but not the Salmonella Pathogenicity island 1 type III secretion System for Virulence in Chickens. Infection and Immunity, 69: 5471–5476.

Kamelia, M., Osman, J. B., Ahmed, O., Ayman, E., Aalaa., S., Mai, D.S. I. Mai. & H. H. (2019). Poultry as a Vector for Emerging Multidrug Resistant Enterococcus spp.: First report of Vancomycin (van) and the Chloramphenicol–florfenicol (cat-fex-cfr) Resistance Genes from Pigeon and Duck faeces. Microbial Pathogenesis. 128, 195-205.

Okoli, I. C., G. E. Endujihe, & I. P. Ogbuewu. (2006). Frequency of Isolation of Salmonella from Commercial Poultry Feeds and their Antimicrobial Resistance Profiles, Imo State, Nigeria. Journal of Health and Allied Science,5 (2): 3.

Shivaprashad, H. I. (2000). Fowl Typhoid and Pullorum Disease. Review of Science Technology, 19 (2): 405-24.

Suresh, T., A. A. M. Hatha, A. A. M., Sreenivasan, D., N. Sangeetha, N. & Lashmanaperumalsamy. P (2006). Prevalence and Antimicrobial Resistance of Salmonella enteritidis and other Salmonellas in the Eggs and Egg-storing trays from Retails Markets of Coimbatore, South India. Food Microbiology, 23: 294-299.

Winokur, P. L A., Brueggemann, D. L., DeSalvo, L., Hoffmann, M. D., Apley, E. K., Uhlenhopp, M. A., & Pfaller, G. V. (2000). Doern.Animal and Human Multidrug- Resistant, Cephalosporin resistant Salmonella Isolates Expressing a Plasmid Mediated CMY-2 AmpC beta-lactamase. Antimicrobial Agents of Chemotherapy 44: 2777-2783.

World Organization for Animal Health (OIE) (2015). Animal report use of antimicrobial agents in animals-better understanding of the global situation: OIE: Paris, France.

Wray, C. & Wray, A. (2001): Salmonella in Domestic Animals, book review. Journal of Veterinary Microbiology 81, 281-282.

Yan, S. S., Pandrak, M. L., Abela-Rider, B., Punderson, J.W., Fedorko, D. & Foley, S. L. (2003). An overview of Salmonella typing public health perspectives. Clinical and Applied Immunology Reviews 4, 189-204.

Yhiler, N.Y. & Bassey, B. E. (2015). Antimicrobial Susceptibility Patterns of Salmonella Species from Sources in Poultry Production Settings in Calabar, Cross River State, Nigeria. American Journal of Health Research. 3, (2) 76-81.doi: 10.11648

Published

2020-09-24

How to Cite

Bichi, Y. A., Ajibade, O. A., Jha, B. K., & Jibril, H. M. (2020). ADOMIAN DECOMPOSITION METHOD FOR STEADY FREE CONVECTIVE COUETTE FLOW IN A VERTICAL CHANNEL WITH NON-LINEAR THERMAL RADIATION, DYNAMIC VISCOSITY AND DYNAMIC THERMAL CONDUCTIVITY EFFECTS. FUDMA JOURNAL OF SCIENCES, 4(3), 389 - 401. https://doi.org/10.33003/fjs-2020-0403-401