A MACHINE LEARNING-BASED PREDICTIVE MODEL FOR HIDDEN PATTERN OF MALARIA PARASITE DETECTION USING SNAKE OPTIMIZATION ALGORITHM
DOI:
https://doi.org/10.33003/fjs-2025-0910-3998Keywords:
FJS2025_9_7_41Abstract
Malaria remains a major global health challenge, necessitating innovative solutions for early and accurate detection. This study addresses the problem of detecting malaria parasites from medical images by leveraging advanced machine learning techniques to enhance classification performance. The primary objective was to improve the accuracy and reliability of malaria detection through the application of optimized classification models. The methodology employed involves a combination of MobileNetV2 for feature extraction and the Snake Optimization Algorithm (SOA) for model optimization. The research evaluates the performance of three classifiers—Random Forest, Naïve Bayes, and Support Vector Machine (SVM)—both with and without SOA. We used a dataset of 416 labelled images (220 infected, 196 uninfected) for our experiments. The result indicated that SOA significantly improved classifier performance. Without SOA, the accuracies were: Random Forest (95%), Naïve Bayes (87%), and SVM (97%). With SOA, these improved to: Random Forest (96%), Naïve Bayes (87%), and SVM (98%). This demonstrates the effectiveness of SOA in optimizing model performance and confirms the robustness of the SVM classifier. Our proposed method not only outperforms benchmark models but also offers a practical framework for improving diagnostic accuracy in medical image analysis.
References
Ado, A., Awujoola, O. J., Abdullahi, S. D., & Ibrahim, S. H. (2025). Integration of layer-wise
relevance propagation, recursive data pruning, and convolutional neural networks for
improved text classification. FUDMA Journal of Sciences (FJS), 9(2), 35–41.
https://doi.org/10.33003/fjs-2025-0902-3058
Awujoola, O. J., Odion, P. O., Evwiekpaefe, A. E., & Obunadike, G. N. (2022). Multi-stream fas
Fourier convolutional neural network for automatic target recognition of ground military
vehicle. Artificial Intelligence and Applications
Andrew, M., Baum, J., Gilson, R. P., & Wilson, W. D. (2023). Bottoms up! Malaria parasite
invasion the right way around. Trends in Parasitology, 39(12), 1004-1013.
https://doi.org/10.1016/j.pt.2023.09.010
Bhuiyan, M., & Islam, M. S. (2022). A new ensemble learning approach to detect malaria from
microscopic red blood cell images. Sensors and Actuators: A: Physical, 100209. doi:
10.1016/j.sintl.2022.100209.
Bhalerao, P., Singh, S., Prajapati, V. K., & Bhatt, T. K. (2024). Exploring malaria parasite surface
proteins to devise highly immunogenic multi-epitope subunit vaccine for Plasmodium
falciparum. Journal of Genetic Engineering and Biotechnology, 22(2), 100377.
He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation
of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30-36.
https://doi.org/10.1038/s41591-018-0307-0
Ikerionwu, C., Ugwuishiwu, C., Okpala, I., James, I. D., Okoronkwo, M., Nnadi, C., Orji, U.,
Ebem, D., & Ike, A. (2022). Application of machine and deep learning algorithms in
optical microscopic detection of Plasmodium: A malaria diagnostic tool for the
future.103198. https://doi.org/10.1016/j.pdpdt.2022.103198.
Lee, Y. W., Choi, J. W., & Shin, E. (2021). Machine learning model for predicting malaria using
clinical information. Computers in Biology and Medicine, 104151.
https://doi.org/10.1016/j.compbiomed.2020.104151
Manning, K., Zhai, X., & Yu, W. (2021). Image analysis and machine learning-based malaria
assessment system. Digital Communications and Networks, 7(2), 132–142.
https://doi.org/10.1016/j.dcan.2021.07.011.
Mariano, R. M. S., Gonçalves, A. A. M., Oliveira, D. S., Ribeiro, H. S., Pereira, D. F. S., Santos,
I. S., Lair, D. F., Silva, A. V. da, Galdino, A. S., Chávez-Fumagalli, M. A., Silveira-Lemos,
D. da, Dutra, W. O., & Giunchetti, R. C. (2023). A review of major patents on potential
malaria vaccine targets, including antigens from different stages of the parasite cycle.
Preprints, 2023010192.
23
Motwani, K., Kanojiya, A., Gomes, C., & Yadav, A. (2020). Malaria detection using image
processing and machine learning. In Proceedings of the NTASU-2020 Conference [SSN:
2278-0181]. Retrieved from www.ijert.org
Nkiruka, O., Prasad, R., & Clement, O. (2021). Prediction of malaria incidence using climate
variability and machine learning. Informatics in Medicine Unlocked, 22, 100508.
Qadri, A. M., Raza, A., Eid, F., & Laith, A. (2023). A novel transfer learning-based model for
diagnosing malaria from parasitized and uninfected red blood cell images. Decision
Analytics Journal, 100352. https://doi.org/10.1016/j.dajour.2023.100352
Sahu, K. P., Priyadarshini, P., Tripathy, S., Das, Y., & Pradhan, S. (2023). Machine learning
strategies for malaria risk prediction based on text-based clinical
information.10.21203/rs.3.rs-2938711/v1.
Santra, A. K., & Christy, J. (2012, January). Genetic Algorithm and Confusion Matrix for
Document Clustering. International Journal of Computer Science Issues, 9(1).
https://creativecommons.org/licenses/by-nc-nd/4.0/
Singh, A., Mehra, M., Kumar, A., Niranjannaik, M., Priya, D., & Gaurav, K. (2023). Leveraging
hybrid machine learning and data fusion for accurate mapping of malaria cases using
meteorological variables in western India. Intelligent Systems with Applications, 17,
200164.
Wagner, P. M., & Chitinis, C. (2023). Lipid peroxidation and its repair in malaria parasites.
Trends in Parasitology, 39(1), 78-88. https://doi.org/10.1016/j.pt.2022.12.006
WHO, (2020). World malaria report 2021. Retrieved from https://www.who.int
WHO, (2023). World malaria report 2021. Retrieved from https://www.who.int
Wagner, P. M., & Chitinis, C. (2023). Lipid peroxidation and its repair in malaria parasites.
Trends in Parasitology, 39(1), 78-88. https://doi.org/10.1016/j.pt.2022.12.006
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Abdurrahman Zangina Abdullahi, Ishola Dada Muraina

This work is licensed under a Creative Commons Attribution 4.0 International License.