A MACHINE LEARNING-BASED PREDICTIVE MODEL FOR HIDDEN PATTERN OF MALARIA PARASITE DETECTION USING SNAKE OPTIMIZATION ALGORITHM

Authors

Keywords:

FJS2025_9_7_41

Abstract

Malaria remains a major global health challenge, necessitating innovative solutions for early and accurate detection. This study addresses the problem of detecting malaria parasites from medical images by leveraging advanced machine learning techniques to enhance classification performance. The primary objective was to improve the accuracy and reliability of malaria detection through the application of optimized classification models. The methodology employed involves a combination of MobileNetV2 for feature extraction and the Snake Optimization Algorithm (SOA) for model optimization. The research evaluates the performance of three classifiers—Random Forest, Naïve Bayes, and Support Vector Machine (SVM)—both with and without SOA. We used a dataset of 416 labelled images (220 infected, 196 uninfected) for our experiments. The result indicated that SOA significantly improved classifier performance. Without SOA, the accuracies were: Random Forest (95%), Naïve Bayes (87%), and SVM (97%). With SOA, these improved to: Random Forest (96%), Naïve Bayes (87%), and SVM (98%). This demonstrates the effectiveness of SOA in optimizing model performance and confirms the robustness of the SVM classifier. Our proposed method not only outperforms benchmark models but also offers a practical framework for improving diagnostic accuracy in medical image analysis.

Dimensions

Ado, A., Awujoola, O. J., Abdullahi, S. D., & Ibrahim, S. H. (2025). Integration of layer-wise

relevance propagation, recursive data pruning, and convolutional neural networks for

improved text classification. FUDMA Journal of Sciences (FJS), 9(2), 35–41.

https://doi.org/10.33003/fjs-2025-0902-3058

Awujoola, O. J., Odion, P. O., Evwiekpaefe, A. E., & Obunadike, G. N. (2022). Multi-stream fas

Fourier convolutional neural network for automatic target recognition of ground military

vehicle. Artificial Intelligence and Applications

Andrew, M., Baum, J., Gilson, R. P., & Wilson, W. D. (2023). Bottoms up! Malaria parasite

invasion the right way around. Trends in Parasitology, 39(12), 1004-1013.

https://doi.org/10.1016/j.pt.2023.09.010

Bhuiyan, M., & Islam, M. S. (2022). A new ensemble learning approach to detect malaria from

microscopic red blood cell images. Sensors and Actuators: A: Physical, 100209. doi:

10.1016/j.sintl.2022.100209.

Bhalerao, P., Singh, S., Prajapati, V. K., & Bhatt, T. K. (2024). Exploring malaria parasite surface

proteins to devise highly immunogenic multi-epitope subunit vaccine for Plasmodium

falciparum. Journal of Genetic Engineering and Biotechnology, 22(2), 100377.

He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation

of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30-36.

https://doi.org/10.1038/s41591-018-0307-0

Ikerionwu, C., Ugwuishiwu, C., Okpala, I., James, I. D., Okoronkwo, M., Nnadi, C., Orji, U.,

Ebem, D., & Ike, A. (2022). Application of machine and deep learning algorithms in

optical microscopic detection of Plasmodium: A malaria diagnostic tool for the

future.103198. https://doi.org/10.1016/j.pdpdt.2022.103198.

Lee, Y. W., Choi, J. W., & Shin, E. (2021). Machine learning model for predicting malaria using

clinical information. Computers in Biology and Medicine, 104151.

https://doi.org/10.1016/j.compbiomed.2020.104151

Manning, K., Zhai, X., & Yu, W. (2021). Image analysis and machine learning-based malaria

assessment system. Digital Communications and Networks, 7(2), 132–142.

https://doi.org/10.1016/j.dcan.2021.07.011.

Mariano, R. M. S., Gonçalves, A. A. M., Oliveira, D. S., Ribeiro, H. S., Pereira, D. F. S., Santos,

I. S., Lair, D. F., Silva, A. V. da, Galdino, A. S., Chávez-Fumagalli, M. A., Silveira-Lemos,

D. da, Dutra, W. O., & Giunchetti, R. C. (2023). A review of major patents on potential

malaria vaccine targets, including antigens from different stages of the parasite cycle.

Preprints, 2023010192.

23

Motwani, K., Kanojiya, A., Gomes, C., & Yadav, A. (2020). Malaria detection using image

processing and machine learning. In Proceedings of the NTASU-2020 Conference [SSN:

2278-0181]. Retrieved from www.ijert.org

Nkiruka, O., Prasad, R., & Clement, O. (2021). Prediction of malaria incidence using climate

variability and machine learning. Informatics in Medicine Unlocked, 22, 100508.

Qadri, A. M., Raza, A., Eid, F., & Laith, A. (2023). A novel transfer learning-based model for

diagnosing malaria from parasitized and uninfected red blood cell images. Decision

Analytics Journal, 100352. https://doi.org/10.1016/j.dajour.2023.100352

Sahu, K. P., Priyadarshini, P., Tripathy, S., Das, Y., & Pradhan, S. (2023). Machine learning

strategies for malaria risk prediction based on text-based clinical

information.10.21203/rs.3.rs-2938711/v1.

Santra, A. K., & Christy, J. (2012, January). Genetic Algorithm and Confusion Matrix for

Document Clustering. International Journal of Computer Science Issues, 9(1).

https://creativecommons.org/licenses/by-nc-nd/4.0/

Singh, A., Mehra, M., Kumar, A., Niranjannaik, M., Priya, D., & Gaurav, K. (2023). Leveraging

hybrid machine learning and data fusion for accurate mapping of malaria cases using

meteorological variables in western India. Intelligent Systems with Applications, 17,

200164.

Wagner, P. M., & Chitinis, C. (2023). Lipid peroxidation and its repair in malaria parasites.

Trends in Parasitology, 39(1), 78-88. https://doi.org/10.1016/j.pt.2022.12.006

WHO, (2020). World malaria report 2021. Retrieved from https://www.who.int

WHO, (2023). World malaria report 2021. Retrieved from https://www.who.int

Wagner, P. M., & Chitinis, C. (2023). Lipid peroxidation and its repair in malaria parasites.

Trends in Parasitology, 39(1), 78-88. https://doi.org/10.1016/j.pt.2022.12.006

Published

03-10-2025

How to Cite

A MACHINE LEARNING-BASED PREDICTIVE MODEL FOR HIDDEN PATTERN OF MALARIA PARASITE DETECTION USING SNAKE OPTIMIZATION ALGORITHM. (2025). FUDMA JOURNAL OF SCIENCES, 9(10), 67-78. https://doi.org/10.33003/fjs-2025-0910-3998

How to Cite

A MACHINE LEARNING-BASED PREDICTIVE MODEL FOR HIDDEN PATTERN OF MALARIA PARASITE DETECTION USING SNAKE OPTIMIZATION ALGORITHM. (2025). FUDMA JOURNAL OF SCIENCES, 9(10), 67-78. https://doi.org/10.33003/fjs-2025-0910-3998