A LAGUERRE-PERTURBED GALERKIN METHOD FOR NUMERICAL SOLUTION OF HIGHER-ORDER NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

Authors

Keywords:

Laguerre Polynomials, Chebyshev Polynomials, Galerkin Method, Quasilinearization, Nonlinear Integro-Differential Equations, Numerical Methods, Higher-Order Differential Equations

Abstract

This study presents a novel Laguerre-Perturbed Galerkin (LPG) method for the numerical solution of higher-order nonlinear integro-differential equations. The method integrates Laguerre polynomials as primary basis functions with shifted Chebyshev polynomial perturbations to improve approximation precision. Nonlinear terms are handled via quasilinearization, converting the problem into a sequence of linear systems solvable within a Galerkin projection framework. The LPG approach is tested on benchmark nonlinear Volterra and Fredholm integro-differential equations, exhibiting superior convergence rates and accuracy compared to existing techniques such as decomposition methods and wavelet collocation. Testing on classic Volterra and Fredholm examples shows LPG pulling ahead, errors drop from about   at N=5 to a tiny   at N=10, with faster exponential convergence than methods like Sharif et al.'s (2020) decomposition or Amin et al.'s (2023) wavelets,which confirm the method's robustness across different orders and nonlinearities. The LPG method's adaptability positions it as a valuable tool for modeling complex phenomena in physics, engineering, and applied mathematics, with opportunities for further extensions to fractional and partial integro-differential systems.

Dimensions

REFERENCES

Adebisi, A. F., Okunola, K. A., Raji, M. T., Adedeji, J. A., & Peter, O. J. (2021). Galerkin and perturbed collocation methods for solving a class of linear fractional integro-differential equations. Aligarh Bulletin of Mathematics, 40(2), 45–47.

Amin, R., Shah, K., Gao, L., & Abdeljawad, T. (2023). On existence and numerical solution of higher-order nonlinear integro-differential equations involving variable coefficients. Results in Nonlinear Analysis, 6(3), 100399. https://doi.org/10.1016/j.rinam.2023.100399

Ansari, A., & Ahmad, N. (2023). Numerical solutions for nonlinear Volterra-Fredholm integro-differential equations using Adomian and modified Adomian decomposition method [Preprint]. Research Square. https://doi.org/10.21203/rs.3.rs-3190865/v1

Chandel, R. S., Singh, A., & Chouhan, D. (2015). Solution of higher-order Volterra integro-differential equations by Legendre wavelets. International Journal of Applied and Computational Mathematics, 28(4), 377–390.

Egbetade, S. A., & Adebisi, A. L. (2025). Numerical solution of first and second order differential equations using the Tau method with an estimation of the error. FUDMA Journal of Sciences, 9(3), 119–121. https://doi.org/10.33003/fjs-2025-0903-3346

Jain, R., & Yadav, S. (2025). Hybridizable discontinuous Galerkin method for nonlinear hyperbolic integro-differential equations. Applied Mathematics and Computation, 453, Article 128393. https://doi.org/10.1016/j.amc.2025.129393

Mamun, A. A., Asaduzzaman, M., & Ananna, S. N. (2019). Solution of eighth-order boundary value problem by using variational iteration method. International Journal of Mathematics and Computer Science, 14(2), 497–509.

Ogunrinde, R. B., Obayomi, A. A., & Olayemi, K. S. (2023). Numerical solutions of third-order Fredholm integro-differential equation via linear multistep-quadrature formula. FUDMA Journal of Sciences, 7(3), 33–44.

Olayiwola, M. O., & Ogunniran, M. O. (2019). Variational iteration method for solving higher-order integro-differential equations. Nigerian Journal of Mathematics and Applications, 29, 18–23.

Olayiwola, M. O., Adebisi, A. F., & Arowolo, Y. S. (2020). Application of Legendre polynomial basis function on the solution of Volterra integro-differential equations using collocation method. Cankaya University Journal of Science and Engineering, 17(1), 41–51.

Sharif, A. A., Hamoud, A. A., & Ghadle, K. P. (2020). Solving nonlinear integro-differential equations by using numerical techniques. Annales Universitatis Apulensis Series Mathematica, 24(1), 81–94. https://doi.org/10.17114/j.aua.2019.61.04

Uwaheren, O. A., Adebisi, A. F., Olotu, O. T., Etuk, M. O., & Peter, O. J. (2021). Legendre Galerkin method for solving fractional integro-differential equations of Fredholm type. Aligarh Bulletin of Mathematics, 40(1), 15–27.

Youssri, Y. H., & Atta, A. G. (2025). Chebyshev Petrov–Galerkin method for nonlinear time-fractional partial integro-differential equations with weakly singular kernels. Calcolo, 62(3), Article 23. https://doi.org/10.1007/s12190-025-02371-w

Published

30-10-2025

How to Cite

Okunola, K., Adebisi, F., & Ojurongbe, T. (2025). A LAGUERRE-PERTURBED GALERKIN METHOD FOR NUMERICAL SOLUTION OF HIGHER-ORDER NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS. FUDMA JOURNAL OF SCIENCES, 9(11), 238 – 242. https://doi.org/10.33003/fjs-2025-0911-3991

How to Cite

Okunola, K., Adebisi, F., & Ojurongbe, T. (2025). A LAGUERRE-PERTURBED GALERKIN METHOD FOR NUMERICAL SOLUTION OF HIGHER-ORDER NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS. FUDMA JOURNAL OF SCIENCES, 9(11), 238 – 242. https://doi.org/10.33003/fjs-2025-0911-3991