MACHINE LEARNING PREDICTION OF PM2.5 IN LAGOS USING EMBEDDED REAL-TIME ENVIRONMENTAL MONITORING
DOI:
https://doi.org/10.33003/fjs-2025-0909-3932Keywords:
Particulate Matter, Embedded System, Machine Learning, Air Quality Prediction, Meteorological DataAbstract
This study aims to develop and evaluate an embedded system for real-time monitoring of PM2.5 and meteorological variables, with the goal of improving machine learning predictions of particulate matter concentrations in Lagos, Nigeria. Given the detrimental health effects of PM2.5, understanding its interaction with environmental factors is crucial for effective air quality control. Over two years (2021–2023), our innovative, custom-developed sensor system was deployed in Akoka, Lagos, to continuously and autonomously collected temperature, humidity, wind speed, atmospheric pressure, and PM2.5 data at two-minute intervals. Leveraging this robust data set, three machine learning algorithms: Random Forest (RF), Gradient Boosting (GB), and Support Vector Machine (SVM), were systematically evaluated for PM2.5 forecasting using R² and RMSE as performance metrics. The Random Forest model demonstrated the best performance (R² = 0.77; RMSE = 10.84 µg/m³), indicating high predictive capacity. Feature importance analysis revealed a limited impact of meteorological variables compared to unmeasured emission sources. This work demonstrates the feasibility of embedded real-time monitoring integrated with ML for urban air quality forecasting, supporting improved policy and public health strategies in rapidly urbanizing regions.
References
Ameer, S., Shah, M., Khan, A., Song, H., Maple, C., Islam, S., & Asghar, M. (2019). Comparative analysis of machine learning techniques for predicting air quality in smart cities. IEEE Access, 7, 1-1. https://doi.org/10.1109/ACCESS.2019.2925082
Atoui, A., Slim, K., Andaloussi, S.A., Moilleron, R., & Khraibani, Z. (2022). Time Series Analysis and Forecasting of the Air Quality Index of Atmospheric Air Pollutants in Zahleh, Lebanon. Atmospheric and Climate Sciences, 12, 728- 749. https://doi.org/10.4236/acs.2022.124040
Cha, G. W., Moon, H. J., & Kim, Y. C. (2021). Comparison of random forest and gradient boosting machine models for predicting demolition waste based on small datasets and categorical variables. International Journal of Environmental Research and Public Health, 18(16), 8530. https://doi.org/10.3390/ijerph18168530
Chen, Z., Chen, D., Zhao, C., Kwan, M.-P., Cai, J., Zhuang, Y., Zhao, B., Wang, X., Chen, B., Yang, J., Li, R., He, B., Gao, B., Wang, K., & Xu, B. (2020). On PM2.5 concentrations across China: A review of methodology and mechanism. Environmental International, 145, 105558. https://doi.org/10.1016/j.envint.2020.105558
Emekwuru, N., & Ejohwomu, O. (2023). Temperature, humidity and air pollution relationships during a period of rainy and dry seasons in Lagos, West Africa. Climate, 11(5), 113. https://doi.org/10.3390/cli11050113
Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M., & Xie, C. (2021). Prediction of PM2.5 hourly concentrations in Beijing based on a machine learning algorithm and ground-based LiDAR. Archives of Environmental Protection, 47(3), 25-37. https://doi.org/10.24425/aep.2021.138468
Gupta, N.S., Yashvi, M., Khyati, H., Raahil, A., and Valarmathi, B. (2023). Prediction of Air Quality Index Using Machine Learning Techniques: A Comparative Analysis. Journal of Environmental and Public Health, (2023)1. https://doi.org/10.1155/2023/4916267
Javaid, M., Haleem, A., Rab, S., Singh, R. P., & Suman, R. (2021). Sensors for daily life: A review. Sensors International, 2, 100121. https://doi.org/10.1016/j.sintl.2021.100121
Khalis, M., Toure, A.B., El Badisy, I., Khomsi, K., Najmi, H., Bouaddi, O., Marfak, A., Al-Delaimy, W.K., Berraho, M., & Nejjari, C. (2022). Relationship between Meteorological and Air Quality Parameters and COVID-19 in Casablanca Region, Morocco. International Journal of Experimental Research and Public Health, 19(9),4989.https://doi.org/10.3390/ijerph19094989
Krishna, R., Jayanthi, D., Sam, D. S., Kavitha, K., Maurya, N. K., & Benil, T. (2024). Application of machine learning techniques for churn prediction in the telecom business. Results in Engineering, 24, 103165. https://doi.org/10.1016/j.rineng.2024.103165
Lala, M.A., Onwunzo, C.S., Adesina,O.A & Sonibare, J.A.(2023). Particulate matter pollution in selected areas of Nigeria: Spatial analysis and risk assessment. Case Studies in Chemical and Environmental Engineering, 7 (2023). https://doi.org/10.1016/j.cscee.2022.100288.
Mahmud, S., Ridi, T.B.I., Miah, M.S., Sarowar, S., & Elahee, S. (2022). Implementing Machine Learning Algorithms to Predict Particulate Matter (PM2.5): A Case Study in the Paso del Norte Region. Atmosphere,13(12),2100. https://doi.org/10.3390/atmos13122100
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontier in Public Health, 8 (14). https://doi.org/10.3389/fpubh.2020.00014
McDuffie, E. E., Martin, R. V., Spadaro, J. V., Burnett, R., Smith, S. J., Hammer, M. S., Van Donkelaar, A., Bindle, L., Shah, V., Jaeglé, L., Luo, G., Yu, F., Adeniran, J. A., Lin, J., & Brauer, M. (2021). Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nature Communications, 12(1), 1-12. https://doi.org/10.1038/s41467-021-23853-y
Nathaniel, M. W., & Xiaoli. (2020). Air Quality Levels and Health Risk Assessment of Particulate Matters in Abuja Municipal Area, Nigeria. Atmosphere. 11(18), 817. https://doi.org/10.3390/atmos11080817
Obike-Martins, V., Fashola, M. S., Oji, N. C., Nwaugo, V. O., Uchenna, F. U., Okwy-Irokanulo,I N., & Enya, E. (2022). Effects of Seasonal Variation on Air Quality and Microbial Composition around Sawmilling Sites in South East Nigeria. Journal of Advances in Microbiology, 22(6), 54–62.https://doi.org/10.9734/jamb/2022/v22i630469
Odubanjo, O. F., Falaiye, O. A., Orosun, M. M., & Sanni, M. (2024). Investigation of particulate matter Air Quality Index (AQI) and risk assessment in some locations in Nigeria. Journal of the Nigerian Society of Physical Sciences, 6(4). https://doi.org/10.46481/jnsps.2024.2120
Okimiji, O.P., Techato, K., Simon, J.N., Tope-Ajayi, O.O., Okafor, A.T., Aborisade, M.A., & Phoungthong, K. (2021). Spatial Pattern of Air Pollutant Concentrations and their Relationship with Meteorological Parameters in Coastal Slum Settlements of Lagos, Southwestern Nigeria. Atmosphere, 12(11), 1426. http://dx.doi.org/10.3390/atmos12111426
Okudo, C. C., Ekere, N. R., & Okoye, C. O. B. (2022). Evaluation of particulate matter (PM2.5 and PM10) concentrations in the dry and wet seasons as indices of air quality in Enugu urban, Enugu State, Nigeria. Journal of Chemical Society of Nigeria, 47(5). https://doi.org/10.46602/jcsn.v47i5.807
Rodríguez-Pérez, R., & Bajorath, J. (2022). Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. Journal of Computer-Aided Molecular Design, 36(5), 355-362. https://doi.org/10.1007/s10822-022-00442-9
Shukla, J., Misra, A. K., Sundar, S., & Naresh, R. (2008). Effect of rain on removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city. Mathematical and Computer Modelling, 48(5-6), 832-844. https://doi.org/10.1016/j.mcm.2007.10.016
Suárez Sánchez, A., García Nieto, P., Riesgo Fernández, P., Del Coz Díaz, J., & Iglesias-Rodríguez, F. (2011). Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Mathematical and Computer Modelling, 54(5-6), 1453-1466. https://doi.org/10.1016/j.mcm.2011.04.017
Thangavel, P., Park, D., & Lee, Y. C. (2022). Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. International Journal of Environmental Research and Public Health, 19(12), 7511. https://doi.org/10.3390/ijerph19127511
Theogene, I., Abubakar, S., & Jean, P. N. (2020). Establishing a Relationship between Meteorological Parameters and Criteria Pollutant Concentration in Delhi. International Journal of Science and Research Methodology. Vol. 15 (1), 30-44. https://ssrn.com/abstract=3800806
Tran, V. A., Khuc, T. D., Truong, X. Q., Nguyen, A. B., & Phi, T. T. (2024). Application of potential machine learning models in landslide susceptibility assessment: A case study of Van Yen district, Yen Bai province, Vietnam. Quaternary Science Advances, 14, 100181. https://doi.org/10.1016/j.qsa.2024.100181
Vignesh, P. P., Jiang, J. H., & Kishore, P. (2023). Predicting PM2.5 concentrations across USA using machine learning. Earth and Space Science, 10 (10). https://doi.org/10.1029/2023EA002911
World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329
Yahaya, T., & Abdulazeez, A. (2023). Concentrations and health risks of particulate matter (PM2.5) and associated elements in the ambient air of Lagos, Southwestern Nigeria. Borno Researcher, 21(3), 2141-2149. https://doi.org/10.4314/br.v21i3.9
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Oduwole F. Odubanjo, Tolulope Aluko, Mohammed Sanni, Oluwaseyi E. Jimoh

This work is licensed under a Creative Commons Attribution 4.0 International License.