DETERMINATION OF IMMEDIATE CAUSES OF 2017 FLOOD EVENT IN DADIN KOWA TOWN, GOMBE STATE, NIGERIA

Authors

  • Saheed A. Bello
  • E. D. Mshelia
  • Peter Ogoja

DOI:

https://doi.org/10.33003/fjs-2020-0403-387

Keywords:

Annual rainfall, return period, obstruction, encroachment, siltation, flood frequency, Dadin Kowa Dam, flood, maximum rainfall.

Abstract

The 2017 Dadin Kowa flood had a more devastating effect in Hore Gare and Tunga areas. The flood occurred as a result of high rainfall, obstruction, siltation and encroachment into flood-prone areas. Monthly maximum and annual rainfall analyses were carried out. The month of June, 2017 received the maximum monthly rainfall of a total of 344 mm which coincided with the month the flood occurred. The analysis of data indicated that flooding in Dadin Kowa town is rainfall-induced and the river channels are expected to be on higher risks of flooding when the channel obstruction capacity coincides with high rainfall intensity. The mean value of annual and maximum rainfall is 834.93 mm and 249.08 mm with standard deviation of 131.95 mm and 49.24 mm respectively at Dadin Kowa town. The recurrence interval of 2, 5, 10, 25, 50, 100 and 200 years of monthly maximum rainfall is 250.70 mm, 292.80 mm, 313.00 mm, 332.70 mm, 344.30 mm, 353.90 mm and 362.00 mm respectively. The frequency analysis of the return period of the maximum monthly rainfall of 344.00 mm is expected to occur in 50 years from 2018 with a magnitude of 344.30 mm. Also, the recurrence interval of 2, 5, 10, 25, 50, 100 and 200 years of annual maximum rainfall is 838.78 mm, 949.40 mm, 1003.60 mm, 1057.70 mm, 1090.30 mm, 1118.10 mm and 1142.10 mm respectively. The frequency analysis of the return period of the 

References

Adeyefa, Z.D & Bjorn, H. (1995). Spectral solar irradiance before and during a Harmattan dust spell. Solar Energy, 57 (3) 195-203. https://doi.org/10.1016/S0038-092X(97)80003-E

Balarabe, M.A. & Isah, N.M (2019). A Modified Linear Regression Model for predicting Aerosol Optical Depth (AOD) in Ilorin-Nigeria; FUDMA Journal of Sciences (FJS), 3 (1) 616-1370

Balarabe, M., Abdullah, K. &Nawawi M. (2016). Seasonal Variations of Aerosol Optical Properties and Identification of Different Aerosol Types Based on AERONET Dataover Sub- Sahara West-Africa. Atmospheric and Climate Sciences, (6) 13-28. doi: 10.4236/acs.2016.61002.

Balarabe, M., Abdullah, K. and Nawawi M. (2015). Long-Term Trend and Seasonal Variability of Horizontal Visibilityin Nigerian Troposphere. Atmosphere, (6) 1462-1486.

Ben Mohamed, A., Frangi J.P. Fontan, J. & Druilhet, A. (1992). Spatial and temporal variations of atmospheric turbidity and related parameters in Niger. Journal of Applied Meteorology, (3) 1286–1294.

Bertrand, J. (1976). Visibilité et brume sèche en Afrique. La météorologie (6) 201-11.

Chen, Y.S., Sheen, P.C. Chen, E.R. Liu, Y.K. Wu, T.N. & Yang, C.Y. (2004). Effects of Asian dust storms events on daily mortality in Taipei, Taiwan. Environmental Research, (95) 151–155.

Chung, Y.S., Kim, H.S. Dulam, J. & Harris, J. (2003a). On heavy dustfall observed with explosive sandstorms in Chongwon Chongju, Korea in 2002. Atmospheric Environment, (37) 3425–3433.

Chung, Y. S., Kim, H. S. Park, K. H. Jhun J. G. and Chen, S. J. (2003b). Atmospheric Loadings, Concentrations and visibility associated with sandstorms: Satellite and meteorological analysis. Water, Air, and Soil Pollution: Focus, (3) 21–40

D’Almeida, G.A. (1986). A model for Saharan dust transport. Journal of Climate and Applied Meteorology, (25) 903–916.

Draxler, R.R., Gillette, D.A. Kirkpatrick, J.S. & Heller, J. (2001). Estimating PM10 air concentrations drom dust storms in Iraq, Kuwait and Saudi Arabia. Atmospheric Environment, (35) 4315–4330.

Engelstaedter, S., Kohfeld, K.E. Tegen, I. Harrison, S.P.(2003). Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data. Geophys. Res. Lett, (30) 1294–1294.

Gillies, J.A., Nickling, W.G. McTainsh G.H. (1996). Dust concentrations and particle-size characteristics of an intense dust haze event : inland delta region, Mali, West Africa. Atmos Environ, (30) 1081-90.

Ginoux, P., Prospero, J.M. Torres, O. & Chin, M. (2004). Long-term simulation of global dust distribution with theGOCART model: correlation with North Atlantic Oscillation. Environmental Modelling & Software, (19) 113–128.

Ginoux, P., Prospero, J.M. Gill, T.E. Hsu, N.C. Zhao, M. (2012). Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev. Geophys. (50) RG3005.

Goudie (2014). Desert dust and human health disorders. Environment International (63) 101–113

Gyan, K., Henry, W., Lacaille, S., Laloo, A., Lamsee-Ebanks, C., McKay, S., Antoine, R.M., Monteil, M.A. African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad. Int. J. Biometeorol. (49), 371–376.

Husar, R.B., Husar, J.D. Martin, L. (2000). Distribution of continental surface aerosol extinction based on visual range data. Atmos. Environ, (34) 5067–5078.

Karimian, H., Li, Q. Li, C. Jin, L. Fan, J. Li, Y. (2016). An Improved Method for Monitoring Fine Particulate Matter Mass Concentrations via Satellite Remote Sensing. Aerosol and Air Quality Research, (16) 1081-1092.

Kellogg, C.A. Griffin, D.W .(2006) .Aerobiology and the global transport of desert dust. Trends Ecol, (21) 638–644

Li, C., Lau, A.K.H. Mao, J. Chu, A. (2005). Retrieval, Validation, and Application of the 1-km Aerosol Optical Depth From MODIS Measurements Over Hong Kong. IEEE T.Geosci.Remote. 43.

N’Tchayi Mbourou, G., Bertrand, J. J. and Nicholson, S. E. (1997). The diurnal and seasonal cycles of wind-borne dust over Africa north of the equator. J. Appl. Meteorol, (36), 868 – 882, doi:10.1175/1520- 0450(1997)0362.0.CO;2

Oluwfemi, C.O. (1988). Particle size distribution, turbidity, and angular scattering in the Harmattan regime. Journal of Geophysical research atmosphere, 93 (D1) 687-690

Ozer P. (2002). Dust variability and land degradation in the Sahel. BELGEO, (2) 195-209.

Ozer, P. (2005). Estimation de la pollution particulaire naturelle de l’air en 2003 `a Niamey (Niger) `a partir de donn´ees de visibilit´e horizontale. Environnement, Risques & Sante, (4), ´

–49.

Pierre, O., Mohamed, B. M. L. Sidi, M. L. Jean, G. (2006). Estimation of air quality degradation due to Saharan dust at Nouakchott, Mauritania, from horizontal visibility data. Water Air Soil Pollution, (178) 79–87

Prospero, J.M., Ginoux, P. Torres, O. Nicholson, S.E. &Gill, T.E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Review of Geophysics, (40), 1002, doi: 10.1029/2000RG000095.

Tanaka, T.Y., Chiba, M. A. (2006). numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Chang. (52) 88–104.

Uduma, A.U. Jimoh, W.L.O.(2013). High incidence of Asthma, Bronchitis, Pneumonia and Sinusitis in Kano State, North West Nigeria during Saharan dust events. Am. J. Environ. Energy Power Res, (1) 174–185.

Washington, R., Todd, M. Middleton, N.J. & Goudie, A.S. (2003). Dust-storm source areas determined by the Total Ozone Monitoring Spectrometer (TOMS) and surface observations. Annals of the Association of American Geographers, (93) 299–315.

Wiggs G.F.S., O’Hara, S.L. Wegerdt, J. Van der Meer, J. Small, I. Hubbard, R. (2003). The dynamics and characteristics of aeolian dust in dryland Central Asia : possible impacts on human exposure and respiratory health in the Aral Sea basin. Geogr J 2003 (169) 142-57.

Published

2020-09-23

How to Cite

Bello, S. A., Mshelia, E. D., & Ogoja, P. (2020). DETERMINATION OF IMMEDIATE CAUSES OF 2017 FLOOD EVENT IN DADIN KOWA TOWN, GOMBE STATE, NIGERIA. FUDMA JOURNAL OF SCIENCES, 4(3), 215 - 223. https://doi.org/10.33003/fjs-2020-0403-387