ISOLATION AND CHARACTERIZATION OF ACTINOBACTERIA WITH POTENTIAL FOR BIOLOGICAL CONTROL OF GRASSY AND BROAD LEAF WEEDS

Authors

  • Adejare R. Oloyede
    Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta, Ogun state
  • Cecilia O. Ojesola
    Department of Microbiology, College of Biosciences, Federal University of Agriculture, P.M.B. 2240,110001, Abeokuta
  • Toheeb O. Onajobi
    Department of Microbiology, College of Biosciences, Federal University of Agriculture, P.M.B. 2240,110001, Abeokuta
  • Adenike E. Onabajo

Keywords:

Biocontrol, Secondary metabolites, Actinobacteria, Post-emergence, Phytotoxicity

Abstract

The management of grassy and broadleaf weeds in various ecosystems, including agricultural and natural landscapes, poses a significant challenge. This study investigated the biocontrol potential of metabolites produced by Actinobacteria on post-emergence of some weed species. Actinobacteria were isolated from different soil samples and characterized using physiological and biochemical methods. The secondary metabolites were extracted from the isolates, and the primary screening of the metabolites for herbicidal activity was conducted using Cucumis sativus assay, followed by post-emergent assay on grassy weeds (Pennisetum purpureum and Cynodon dactylon) and broad leaf weeds (Amaranthus spinosus and Tridax procumbens)under screen house conditions. Data on phytotoxicity of metabolites were collected and analyzed. In this study, twenty isolates of Actinobacteria were obtained and identified as species of Streptomyces (65%), Actinomyces (15%), Microbacterium (10%) and Micromonospora (10%). Eight (40%) of the isolates produced secondary metabolites that showed visual phytotoxic effects on Cucumis sativus with Streptomyces clavuligerus RSR2, S. clavuligerus RSD and Streptomyces griseus TRD exhibiting higher phytotoxicity.The study further showed that metabolites produced by S. clavuligerus RSR2, S. clavuligerus RSD and S. griseusTRDexhibited significantly (p ≤ 0.05) higher phytotoxicity on post-emergent P. purpureum (55.8 – 68.0%), C. dactylon(55.0% - 60.0%), A. spinosus (58.0 – 69.80%) and T. procumbens(55.0 – 64.0%) in the screen house. The study, therefore, showed that the secondary metabolites of Streptomyces clavuligerus RSR2, Streptomyces clavuligerus RSD and Streptomyces griseus TRD could be developed as potential post-emergent bioherbicides for controlling some grassy and broad-leaved weeds

Dimensions

Adetunji, C. O., Oloke, J. K., Prasad, G., Bello, O. M., Osemwegie, O. O., Pradeep, M.&Jolly, R.S.(2017). Isolation, identification, characterization and screeningof rhizospheric bacteriafor herbicidal activity,Organic Agriculture, DOI https://doi.org/10.1007/s13165-017-0184-8.

Balachandar, R., Karmegam, N., Saravanan, M., Subbaiya, R. &Gurumoorthy, P. (2018). Synthesis of bioactive compounds from vermicast isolated Actinomyces species and its antimicrobial activity against human pathogenic bacteria,Microbial Pathogenesis, 121: 155 – 165.

Barka, E. A., Vatsa, P. & Sanchez, L. (2016). Taxonomy, physiology, and natural products of Actinobacteria, Microbiology and Molecular Biology Reviews, 80(1):1–43.

Bo, A. B., Kim, J. D., Kim, Y. S., Sin, H. T., Kim, H. J., Khaitov, B., Ko, Y. K., Park, K. W. & Choi, J. S. (2019). Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide,PLoS One, 14(9): 1 – 18.

Daguerre, Y., Siegel, K., Edel-Hermann, V. & Steinberg, C. (2014). Fungal proteins and genes associated with biocontrolmechanisms of soil-borne pathogens: a review,Fungal Biology Reviews, 28 (4): 97–125.

Daniel, J. J., Zabot, G. L., Tres, M. V., Harakava, R., Kuhn, R. C. & Mazutti, M. A. (2018).Fusarium fujikuroi: A novel source ofmetabolites with herbicidal activity, Biocatalysis and Agricultural Biotechnology,14: 314–320.

Das, R., Romi, W., Das, R., Sharma, H. K. and Thakur, D. (2018). Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India, BMC Microbiology, 18 (71): 1 - 16.

Demain, A. L., Gomez, B., Ruiz, B., Rodriguez, R. & Sanchez, S. (2019). Recent findings of molecules with anti-infective activity: screening of non-conventional sources, Current Opinion in Pharmacology, 48: 40 – 47.

De Almeida, T. C., Klaic, R., Ariotti, G., Sallet, D., Spannemberg, S. S., Schmaltz, S., Foletto, E. L., Kuhn, R. C., Hoffmann, R. & Mazutti, M. A. (2020).Production and formulation of a bioherbicide as environment-friendly and safer alternative for weed control, Biointerface Research in Applied Chemistry,10 (4): 5938 – 5943.

de Souza, A.R.C., Baldoni, D.B., Lima, J., Porto, V., Marcuz, C., Machado, C., Ferraz, R.C., Kuhn, R.C., Jacques, R.J.S., Guedes, J.V.C. & Mazutti, M.A. (2017). Selection, isolation and identification of fungi for bioherbicide production,Brazilian Journal of Microbiology, 48: 101 – 108.

Dhanasekaran, D., Thajuddin, N. & Panneerselvam, A. (2010). Herbicidal agents from Actinomycetes against selected crop plants and weeds,Natural Product Research, 24 (6): 521 - 529.

Dhanasekaran, D., Ambika, K., Thajuddin, N. & Panneerselvam, A. (2012). Allelopathic effect of Actinobacterial isolates against selected weeds, Archives of Phytopathology and Plant Protection, 45 (5): 505 - 521.

El-Hadi, A. A., Ahmed, H. M. & Hamzawy, R. A. (2019). Optimization and characterization of L-asparaginase production by a novel isolated Streptomyces spp. strain,Egyptian Pharmaceutical Journal, 18:111 – 122.

Guo, Q., Cheng, L., Zhu, H., Li, W., Wei, Y., Chen, H., Guo, L., Weng, H. & Wang, J. (2020). Herbicidal activity of Aureobasidium pullulans PA-2 on weeds and optimization of its solid-state fermentation conditions,Journal of Integrative Agriculture,19(1): 173 – 182.

Harir, M., Bendif, H., Bellahcene, M., Fortas, Z. & Pogni, R. (2018). Streptomyces secondary metabolites, Intech Open, doi: https://doi.org/10.5772/intechopen.79890.

Hasan, M., Ahmad-Hamdani, M. S., Rosli, A. M. and Hamdan, H. 2021. Bioherbicides: An eco-friendly tool for sustainable weed management: review, Plants, 10(1212): 1–21. https://doi.org/10.3390/plants10061212.

Oloyede, A. R., Qosim, A. H. O., Atayese, A. O. & Badmos, A. O. (2025). Phytotoxic potential and safety of metabolites produced by rhizospheric fungi on the post-emergence of goat weed (Ageratum conyzoides L.) under greenhouse and field conditions,Archives of Phytopathology and Plant Protection, 58(3): 167 – 181.

Pillmoor, J. B. (1998). Carbocyclic coformycin: a case study of the opportunities and pitfalls in the industrial search for new agrochemicals from nature,Pesticide Science, 52:75 - 80.

Priyadharsini, P, Dhanasekaran, D. & Kanimozhi, B. (2013). Isolation, structural identification and herbicidal activity of N-phenylpropanamide from Streptomyces sp. KA1-3,Archives of Phytopathology and Plant Protection, 46 (3):364 - 373.

Ranjani, A., Dhanasekaran, D. & Gopinat, P. M. (2016). An introduction to Actinobacteria, InTech, doi: https://doi.org/10.5772/62329.

Sadia, J., Zubaida, Y., Madiha, R., Nadia, S., Maria, Z., Ramzan, H., Yasin, H., Qamar N. R.,&Aftab, A. (2016). Pericarp of Trapanatans var.bispinosa (Roxb.) Makino as anorganic herbicide,International Journal of Advance Agricultural Research, 4: 94 – 104.

Schein, D., Santos, M.S.N., Schmaltz, S., Nicola, L.E.P., Bianchin,C.F., Ninaus, R.G., Menezes, B.B., Santos, R.C., Zabot, G.L.& Tres, M.V. (2022). Microbial prospection for bioherbicide production and evaluation of methodologies for maximizing phytotoxicactivity,Processes, 10 (2001).

Shang, Y., Xiao, G., Zheng, P., Cen, K., Zhan, S. & Wang, C. (2016). Divergent and convergent evolution of fungal pathogenicity,Genome Biology and Evolution,8(5): 1374 – 1387.

Shi, B., Wang, J., Jiang, R. & Liu, D. (2018). Plant-microbe symbioses reveal underestimation of modeled climate impacts, Biogeosciences, 1: 123

Singh, H., Naik, B., Kumar, V. & Bisht, G. S. (2018). Screening of endophytic actinomycetes for their herbicidal activity, Annals of Agrarian Science, 16(2): 101-107.

Stergiopoulos, I., Collemare, J.,Mehrabi, R. & De Wit, P. J. (2013). Phytotoxic secondary metabolites and peptides producedby plant pathogenic Dothideomycete fungi,FEMS Microbiology Reviews, 37: 67–93.

Valan Arasu, M., Duraipandiyan, V., Agastian, P. & Ignacimuthu, S. (2008). Antimicrobial activity of Streptomyces sp. ERI-26 recovered from Western Ghats of Tamil Nadu, Journal of Mycology Medicine, 19:22–28.

Yu, J., Zhang, L., Liu, Q., Qi, X., Ji, Y. & Kim, B. S. (2015). Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China,Asian Pacific Journal of Tropical Biomedicine, 5(7): 555 – 560.

Zeilinger, S., Gupta, V.K., Dahms, T.E.S., Silva, R.N., Singh, H.B., Upadhyay, R.S., Gomes, E.V., Tsui, C.K.M. & Nayak, C.S. (2016). Friends or foes? Emerging insights from fungal interactions with plants,FEMS Microbiology Reviews,40(2): 182 – 207.

Percentage Occurrence of Actinobacteria Isolated from Different Soil Samples

Published

17-11-2025

How to Cite

Oloyede, A., Ojesola, C., Onajobi, T., & Onabajo, A. (2025). ISOLATION AND CHARACTERIZATION OF ACTINOBACTERIA WITH POTENTIAL FOR BIOLOGICAL CONTROL OF GRASSY AND BROAD LEAF WEEDS. FUDMA JOURNAL OF SCIENCES, 9(12), 26-34. https://doi.org/10.33003/fjs-2025-0911-3807

How to Cite

Oloyede, A., Ojesola, C., Onajobi, T., & Onabajo, A. (2025). ISOLATION AND CHARACTERIZATION OF ACTINOBACTERIA WITH POTENTIAL FOR BIOLOGICAL CONTROL OF GRASSY AND BROAD LEAF WEEDS. FUDMA JOURNAL OF SCIENCES, 9(12), 26-34. https://doi.org/10.33003/fjs-2025-0911-3807