INVESTIGATING LIGNIN-MODIFYING ENZYMES FOR SUSTAINABLE PULP AND PAPER PRODUCTION
Abstract
The pulp and paper industry is under pressure to reduce its reliance on conventional pulping methods that involve harsh chemicals, high energy input and the generation of toxic effluents. This study presents a sustainable alternative using enzyme-assisted alkaline peroxide pretreatment for pulping agricultural residues, specifically corn (Zea mays) husk and pineapple (Ananas comosus) crown. Xylanase and ligninase enzymes produced from Aspergillus niger and Trichoderma reesei grown on agro-waste substrates, were evaluated for their delignification potential. Enzyme activity was measured using UV spectrophotometry while lignin removal post-treatment was quantified chemically. Among the enzymes tested, xylanase demonstrated the highest delignification efficiency. Peak xylanase activity on pineapple crown was recorded at 3.4854 nm after 96 hours, while corn husk showed a maximum activity of 1.9535 nm at 72 hours. These variations underscore the importance of enzyme-substrate compatibility and incubation time for optimal performance. Xylanase pretreatment led to substantial lignin reductions of 64.91% for pineapple crown and 60.61% for corn husk facilitating improved fiber liberation. This enhances pulp yield, fiber bonding, and paper strength making the process suitable for industrial application. By integrating enzymatic treatment with alkaline peroxide pretreatment, this method offers an eco-friendly pulping approach that reduces chemical dependency and environmental burden. Furthermore, the use of agricultural residues promotes waste valorization and supports a circular bioeconomy. This research demonstrates the viability of enzyme-assisted pulping as a green technology pathway, advancing both environmental sustainability and economic efficiency in the pulp and paper industry.
References
Abakumov, A.M.; Fedotov, S.S.; Antipov, E.V.; Tarascon, J.M. (2020). Solid State Chemistry for Developing Better Metal Ion Batteries. Nat. Commun, 11, 4976. DOI: https://doi.org/10.1038/s41467-020-18736-7
Atawi, I.E.; Al-Shetwi, A.Q.; Magableh, A.M.; Albalawi, O.H.(2022). Recent Advances in Hybrid Energy Storage System Integrated Renewable Power Generation: Configuration, Control, Applications, and Future Directions. Batteries, 9, 29. DOI: https://doi.org/10.3390/batteries9010029
BU-302 (2023) Series and Parallel Battery Configuration. Available online: https://batteryuniversity.com/article/ bu-302-series-and-parallel-battery-configurations
Deng, D. (2015). Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 3, 385418. DOI: https://doi.org/10.1002/ese3.95
Divya, K.C.; stergaard, J. (2009). Battery Energy Storage Technology for Power SystemsAn Overview. Electr. Power Syst. Res, 79, 511520. DOI: https://doi.org/10.1016/j.epsr.2008.09.017
Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. (2022) A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability, 14, 4792 DOI: https://doi.org/10.3390/su14084792
Islam, M.; Omole, A.; Islam, A.; Domijan, A. (2010). Dynamic Capacity Estimation for a Typical Grid-Tied Event Programmable Li-FePO4 Battery. In Proceedings of the IEEE International Energy Conference and Exhibition (EnergyCon), Manama, Bahrain, 1822 December 2010; pp. 594599. DOI: https://doi.org/10.1109/ENERGYCON.2010.5771751
John, B. Goodenough (2011). Evolution of Strategies for Modern Rechargeable Batteries. J. Power Sources, 196, 22201. DOI: https://doi.org/10.1016/j.jpowsour.2010.11.074
Liu, C.; Neale, Z.G.; Cao, G. (2016). Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. 19, 109123. DOI: https://doi.org/10.1016/j.mattod.2015.10.009
Liu, D.; Cao, G. (2010) Engineering Nanostructured Electrodes and Fabrication of Film Electrodes for Efficient Lithium Ion Intercalation. Energy Environ. Sci., 3, 12181237. DOI: https://doi.org/10.1039/b922656g
Nazri, G.-A.; Pistoia, G. (Eds.) (2023). Lithium Batteries: Science and Technology Google Books; Springer US: New York City, NY, USA, ISBN 978-0-387-92675-9.
Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. (2013). Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 113, 53645457. DOI: https://doi.org/10.1021/cr3001884
Roy, P.; Srivastava, S.K. (2015). Nanostructured Anode Materials for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3, 24542484. DOI: https://doi.org/10.1039/C4TA04980B
Sayed, E. T., Olabi, A. G., Alami, A. H., Radwan, A., Mdallal, A., Rezk, A., & Abdelkareem, M. A. (2023). Renewable energy and energy storage systems. Energies, 16(3), 1415. DOI: https://doi.org/10.3390/en16031415
Shukla, A.K.; Prem Kumar, T. (2008). Materials for Next-Generation Lithium Batteries. Curr. Sci., 94, 314331.
T. Kowitkulkrai (2019). Internal resistance computation of a cylindrical LCO battery for heat generation model., IOP Conf. Ser. Mater. Sci. Eng. 501 (2019), 012057. DOI: https://doi.org/10.1088/1757-899X/501/1/012057
Un-Hyuck Kim, Soo-Been Lee, Nam-Yung Park, Suk Jun Kim, Chong Seung Yoon, and Yang-Kook Sun. (2022). High-Energy-Density Li-Ion Battery Reaching Full Charge in 12 min. ACS Energy Lett. 7, 38803888 DOI: https://doi.org/10.1021/acsenergylett.2c02032
Wang, F.; Wu, X.; Li, C.; Zhu, Y.; Fu, L.; Wu, Y.; Liu, X. (2016). Nanostructured Positive Electrode Materials for Post-Lithium Ion Batteries. Energy Environ. Sci. 2016, 9, 35703611. DOI: https://doi.org/10.1039/C6EE02070D
Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L. (2021). Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2, 100180. DOI: https://doi.org/10.1016/j.xinn.2021.100180
Wu, B.; Ren, Y.; Li, N. (2018) LiFePO4 Cathode Materials. In Electric VehiclesThe Benefits and Barriers; Soylu, S., Ed.; IntechOpen: London, UK; Volume 18, pp. 36313638; ISBN 978-953-51-6037-3.
Zhang, J.; Zhang, L.; Sun, F.; Wang, Z. (2018). An Overview on Thermal Safety Issues of Lithium-Ion Batteries for Electric Vehicle Application. IEEE Access, 6, 2384823863. DOI: https://doi.org/10.1109/ACCESS.2018.2824838
Zu. W, J. MA, L. Zhang, (2017). Finite element thermal model and simulation for a cylindrical li-Ion battery. IEEE Access 5 1537215379. DOI: https://doi.org/10.1109/ACCESS.2017.2723436
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences