TOWARDS SUSTAINABLE SOLAR ENERGY STORAGE: A PATENT ANALYSIS FOR IMPROVING ENERGY DENSITY, CYCLE DURABILITY AND RATE CAPACITY FOR HYBRID LITHIUM-ION BATTERY (LiFePO4)
Abstract
The adoption of renewable energy is accelerating globally in wind and solar energy generation, solar energy particularly provides the promising outlook, its availability and flexibility of use makes it the most acceptable energy source required to achieve high perceptions of intermittent renewable energy. Despite this, solar energy storage capacity is currently underutilized in terms of minutes to hours of output at full power capacity. Although, research efforts and resource planning have begun to forecast on large-scale solar energy storage for a long duration, none has achieved a larger power capacity for a long duration. To this end, we explored the essentials of long-duration energy storage systems by analysing energy density, cycle durability and capacity rating for Hybrid Lithium-ion Battery (LiFePO4). In doing so, major components of potential long-duration storage values and their sensitivity to key parameters were assessed and the resulting indicators compared. The study showed a fast response time with improved energy density leading to a relatively high efficiency of about 42% as compare to the standard roundtrip efficiency of 45%. Cycle durability was highly influenced by depth of discharge (DoD), leading to a relatively short 3.5-hour lifetime for charge management, which is common when considering typical battery behaviour. Thus, strategies identified to improve Li-ion batteries: finding alternative electrode materials to improve energy density, decrease the environmental and societal impact of the raw materials, implementing self-healing mechanisms to improve cycle lifetime, and improving the efficiency to decrease costs.
References
Abakumov, A.M.; Fedotov, S.S.; Antipov, E.V.; Tarascon, J.M. (2020). Solid State Chemistry for Developing Better Metal Ion Batteries. Nat. Commun, 11, 4976. DOI: https://doi.org/10.1038/s41467-020-18736-7
Atawi, I.E.; Al-Shetwi, A.Q.; Magableh, A.M.; Albalawi, O.H.(2022). Recent Advances in Hybrid Energy Storage System Integrated Renewable Power Generation: Configuration, Control, Applications, and Future Directions. Batteries, 9, 29. DOI: https://doi.org/10.3390/batteries9010029
BU-302 (2023) Series and Parallel Battery Configuration. Available online: https://batteryuniversity.com/article/ bu-302-series-and-parallel-battery-configurations
Deng, D. (2015). Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 3, 385418. DOI: https://doi.org/10.1002/ese3.95
Divya, K.C.; stergaard, J. (2009). Battery Energy Storage Technology for Power SystemsAn Overview. Electr. Power Syst. Res, 79, 511520. DOI: https://doi.org/10.1016/j.epsr.2008.09.017
Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. (2022) A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability, 14, 4792 DOI: https://doi.org/10.3390/su14084792
Islam, M.; Omole, A.; Islam, A.; Domijan, A. (2010). Dynamic Capacity Estimation for a Typical Grid-Tied Event Programmable Li-FePO4 Battery. In Proceedings of the IEEE International Energy Conference and Exhibition (EnergyCon), Manama, Bahrain, 1822 December 2010; pp. 594599. DOI: https://doi.org/10.1109/ENERGYCON.2010.5771751
John, B. Goodenough (2011). Evolution of Strategies for Modern Rechargeable Batteries. J. Power Sources, 196, 22201. DOI: https://doi.org/10.1016/j.jpowsour.2010.11.074
Liu, C.; Neale, Z.G.; Cao, G. (2016). Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. 19, 109123. DOI: https://doi.org/10.1016/j.mattod.2015.10.009
Liu, D.; Cao, G. (2010) Engineering Nanostructured Electrodes and Fabrication of Film Electrodes for Efficient Lithium Ion Intercalation. Energy Environ. Sci., 3, 12181237. DOI: https://doi.org/10.1039/b922656g
Nazri, G.-A.; Pistoia, G. (Eds.) (2023). Lithium Batteries: Science and Technology Google Books; Springer US: New York City, NY, USA, ISBN 978-0-387-92675-9.
Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. (2013). Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 113, 53645457. DOI: https://doi.org/10.1021/cr3001884
Roy, P.; Srivastava, S.K. (2015). Nanostructured Anode Materials for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3, 24542484. DOI: https://doi.org/10.1039/C4TA04980B
Sayed, E. T., Olabi, A. G., Alami, A. H., Radwan, A., Mdallal, A., Rezk, A., & Abdelkareem, M. A. (2023). Renewable energy and energy storage systems. Energies, 16(3), 1415. DOI: https://doi.org/10.3390/en16031415
Shukla, A.K.; Prem Kumar, T. (2008). Materials for Next-Generation Lithium Batteries. Curr. Sci., 94, 314331.
T. Kowitkulkrai (2019). Internal resistance computation of a cylindrical LCO battery for heat generation model., IOP Conf. Ser. Mater. Sci. Eng. 501 (2019), 012057. DOI: https://doi.org/10.1088/1757-899X/501/1/012057
Un-Hyuck Kim, Soo-Been Lee, Nam-Yung Park, Suk Jun Kim, Chong Seung Yoon, and Yang-Kook Sun. (2022). High-Energy-Density Li-Ion Battery Reaching Full Charge in 12 min. ACS Energy Lett. 7, 38803888 DOI: https://doi.org/10.1021/acsenergylett.2c02032
Wang, F.; Wu, X.; Li, C.; Zhu, Y.; Fu, L.; Wu, Y.; Liu, X. (2016). Nanostructured Positive Electrode Materials for Post-Lithium Ion Batteries. Energy Environ. Sci. 2016, 9, 35703611. DOI: https://doi.org/10.1039/C6EE02070D
Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L. (2021). Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2, 100180. DOI: https://doi.org/10.1016/j.xinn.2021.100180
Wu, B.; Ren, Y.; Li, N. (2018) LiFePO4 Cathode Materials. In Electric VehiclesThe Benefits and Barriers; Soylu, S., Ed.; IntechOpen: London, UK; Volume 18, pp. 36313638; ISBN 978-953-51-6037-3.
Zhang, J.; Zhang, L.; Sun, F.; Wang, Z. (2018). An Overview on Thermal Safety Issues of Lithium-Ion Batteries for Electric Vehicle Application. IEEE Access, 6, 2384823863. DOI: https://doi.org/10.1109/ACCESS.2018.2824838
Zu. W, J. MA, L. Zhang, (2017). Finite element thermal model and simulation for a cylindrical li-Ion battery. IEEE Access 5 1537215379. DOI: https://doi.org/10.1109/ACCESS.2017.2723436
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences