EFFECT OF TEMPERATURE VARIATIONS ON CONDENSATE DROPOUT AND PHASE BEHAVIOR IN GAS CONDENSATE RESERVOIRS

  • S. Gloria Neminebor Federal University of Petroleum Resources, Effurun
  • K. Peretengboro Bibaikefie Federal University of Petroleum Resources, Effurun
  • Michael Akindele Okedoye Federal University of Petroleum Resources, Effurun
Keywords: Gas condensate reservoirs, Temperature variations, Condensate dropout, Phase behavior, Joule-Thomson effect, Reservoir simulation, Thermodynamics

Abstract

Gas condensate reservoirs exhibit complex thermodynamic and phase behavior, where variations in temperature significantly impact condensate dropout and overall hydrocarbon recovery. In these reservoirs, as pressure drops below the dew point, liquid condensate forms in the porous medium, reducing gas relative permeability and impairing well deliverability. Temperature changes influence phase equilibrium, interfacial tension, fluid viscosity, and retrograde condensation, making it essential to incorporate thermal effects in reservoir management and simulation models. This study presents a comprehensive analysis of the impact of temperature variations on condensate dropout and phase behavior using a combination of experimental PVT (Pressure-Volume-Temperature) analysis, numerical simulations, and thermodynamic modeling. The study integrates thermodynamic principles, phase behavior modeling, and reservoir simulation to analyze the effects of temperature fluctuations, particularly due to Joule-Thomson cooling and geothermal gradients, on reservoir performance. Results indicate that temperature variations play a critical role in condensate dropout, fluid distribution, and recovery efficiency. The findings provide valuable insights into optimizing production strategies and mitigating challenges such as condensate blockage in gas condensate reservoirs. This research highlights the importance of incorporating thermal effects in reservoir modeling and offers practical solutions for improving hydrocarbon recovery in gas condensate systems.

References

Ahmed, T. (2010). Reservoir engineering handbook. Gulf Professional Publishing. DOI: https://doi.org/10.1016/B978-1-85617-803-7.50021-3

Al-Abri, A., & Al-Maskari, N. (2023). Experimental study of condensate dropout in gas-condensate reservoirs under variable temperature conditions. Journal of Natural Gas Science and Engineering, 102, 104567. https://doi.org/10.1016/j.jngse.2022.104567 DOI: https://doi.org/10.1016/j.jngse.2022.104567

Al-Hadhrami, A. K., & Al-Wahaibi, Y. (2022). Experimental and numerical investigation of temperature effects on gas-condensate flow in porous media. Journal of Petroleum Science and Engineering, 208, 109678. https://doi.org/10.1016/j.petrol.2021.109678 DOI: https://doi.org/10.1016/j.petrol.2021.109678

Al-Hinai, M., & Al-Bimani, A. (2023). Impact of Joule-Thomson cooling on condensate dropout near the wellbore: A case study. SPE Production & Operations, 38(1), 123135. https://doi.org/10.2118/214567-PA

Al-Mahrooqi, S. H., Grattoni, C. A., & Muggeridge, A. H. (2003). Pore-scale modeling of gas-condensate flow. SPE Journal, 8(2), 114124. https://doi.org/10.2118/84038-PA

Al-Mahrooqi, S., & Al-Siyabi, H. (2023). Numerical modeling of gas-condensate flow in fractured reservoirs under non-isothermal conditions. Journal of Petroleum Exploration and Production Technology, 13(5), 12341248. https://doi.org/10.1007/s13202-023-01634-1 DOI: https://doi.org/10.1007/s13202-023-01634-1

Al-Mjeni, R., & Al-Saadi, S. (2022). Temperature management strategies to mitigate condensate blockage in gas-condensate reservoirs. SPE Reservoir Evaluation & Engineering, 25(3), 567580. https://doi.org/10.2118/209456-PA

Ayala, L. F., & Kouassi, K. (2005). Analytical modeling of gas-condensate flow in reservoirs undergoing temperature changes. SPE Latin American and Caribbean Petroleum Engineering Conference. https://doi.org/10.2118/94722-MS

Ayala, L. F., & Kouassi, K. (2007). Analytical modeling of gas-condensate flow in reservoirs undergoing temperature changes. Journal of Petroleum Science and Engineering, 59(12), 112. https://doi.org/10.1016/j.petrol.2007.02.008 DOI: https://doi.org/10.1016/j.petrol.2007.02.008

Bang, V. S. S., & Pope, G. A. (1999). Effect of temperature on gas-condensate relative permeability. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/56479-MS DOI: https://doi.org/10.2118/56479-MS

Bang, V. S. S., & Pope, G. A. (2000). Effect of temperature on gas-condensate relative permeability. SPE Journal, 5(2), 171180. https://doi.org/10.2118/62936-PA

Danesh, A. (1998). PVT and phase behavior of petroleum reservoir fluids. Elsevier.

Elsharkawy, A. M., & Alikhan, A. A. (1999). Correlations for predicting gas/condensate phase behavior. Journal of Petroleum Science and Engineering, 23(2), 8392. https://doi.org/10.1016/S0920-4105(99)00009-7

Fevang, ., & Whitson, C. H. (1996). Modeling gas-condensate well deliverability. SPE Reservoir Engineering, 11(4), 221230. https://doi.org/10.2118/30714-PA DOI: https://doi.org/10.2118/30714-PA

Gringarten, A. C., Al-Lamki, A., & Daungkaew, S. (2000). Well test analysis in gas-condensate reservoirs. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/62938-MS DOI: https://doi.org/10.2523/62920-MS

Jamiolahmady, M., Danesh, A., & Tehrani, D. H. (2000). Gas-condensate flow around the wellbore: Effect of temperature and pressure. SPE Journal, 5(3), 305313. https://doi.org/10.2118/62937-PA

Kumar, S., & Sharma, T. (2022). Thermodynamic modeling of gas-condensate systems under non-isothermal conditions. Fluid Phase Equilibria, 553, 113298. https://doi.org/10.1016/j.fluid.2021.113298 DOI: https://doi.org/10.1016/j.fluid.2021.113298

Li, J., & Zhang, Y. (2023). Phase behavior and flow characteristics of gas-condensate systems in high-temperature reservoirs. Petroleum Science, 20(2), 9871001. https://doi.org/10.1016/j.petsci.2023.01.012 DOI: https://doi.org/10.1016/j.petsci.2022.11.008

Mott, R., Cable, A., & Spearing, M. (1999). Measurements and modeling of the impact of condensate blockage on well deliverability. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/56480-MS DOI: https://doi.org/10.2118/56480-MS

Mott, R., Cable, A., & Spearing, M. (2000). Measurements and modeling of the impact of condensate blockage on well deliverability. SPE Journal, 5(3), 298304. https://doi.org/10.2118/62935-PA DOI: https://doi.org/10.2118/68050-PA

Sadeghnejad, S., & Masihi, M. (2011). Effect of temperature on gas-condensate relative permeability: Experimental and modeling study. Journal of Petroleum Science and Engineering, 78(2), 300308. https://doi.org/10.1016/j.petrol.2011.06.012 DOI: https://doi.org/10.1016/j.petrol.2011.06.012

Wang, H., & Chen, Z. (2022). Numerical simulation of gas-condensate flow with temperature-dependent fluid properties. Computational Geosciences, 26(4), 789802. https://doi.org/10.1007/s10596-022-10131-1

Whitson, C. H., & Brule, M. R. (2000). Phase behavior. Society of Petroleum Engineers.

Whitson, C. H., & Brule, M. R. (2000). Phase behavior. Society of Petroleum Engineers. DOI: https://doi.org/10.2118/9781555630874

Xu, L., & Liu, X. (2023). Thermal management of gas-condensate reservoirs: A review of recent advances. Energy Reports, 9, 45674580. https://doi.org/10.1016/j.egyr.2023.03.012 DOI: https://doi.org/10.1016/j.egyr.2023.03.012

Zhang, X., Li, Y., & Wang, Z. (2022). Impact of temperature gradients on condensate dropout and recovery in gas-condensate reservoirs. Energy & Fuels, 36(5), 25672578. https://doi.org/10.1021/acs.energyfuels.1c04022

Published
2025-07-18
How to Cite
Neminebor, S. G., Bibaikefie , K. P., & Okedoye, M. A. (2025). EFFECT OF TEMPERATURE VARIATIONS ON CONDENSATE DROPOUT AND PHASE BEHAVIOR IN GAS CONDENSATE RESERVOIRS. FUDMA JOURNAL OF SCIENCES, 9(7), 207 - 214. https://doi.org/10.33003/fjs-2025-0907-3778