A UNIFIED FRAMEWORK FOR ELLIPTICAL COORDINATE SYSTEMS IN CELESTIAL MECHANICS: ANALYTICAL SOLUTIONS, NUMERICAL VALIDATION, AND APPLICATIONS TO MULTI-BODY ORBITAL DYNAMICS

  • Durojaiye Jude Koffa Federal University Lokoja
  • Olakunle Ogunjobi Federal University Lokoja
  • Vivian Obaje Onechojo Prince Abubakar Audu University
  • Mustapha Muhammad Gwani Federal University Lokoja
  • Stephen Osas Eghaghe Bingham University
  • Fatai Ahmed-Ade Federal University Lokoja
  • Iyanuloluwa Esther Olorunleke Federal University Lokoja
Keywords: Elliptical Coordinates, Analytical Solutions, Celestial Dynamics, Coordinate Transformations, Lagrangian Mechanics

Abstract

Traditional canonical coordinate systems (Cartesian, polar, spherical) exhibit fundamental limitations when describing the natural elliptical trajectories of celestial bodies, leading to computational inefficiencies and reduced accuracy in orbital mechanics applications. We develop a comprehensive analytical framework for elliptical coordinate systems that provides exact solutions to previously intractable orbital dynamics problems while maintaining computational efficiency. Through rigorous mathematical derivation employing Lagrangian mechanics, we establish complete kinematic and dynamic relationships in elliptical coordinates, followed by extensive numerical validation using benchmark orbital scenarios and comparative analysis against established methods. Our framework yields analytical solutions for central force problems that previously required numerical integration, demonstrating improved computational efficiency and a three orders of magnitude enhancement in long-term orbital prediction accuracy. The method successfully handles high-eccentricity orbits where conventional approaches fail, with applications validated against real asteroid and comet trajectories. This work establishes elliptical coordinates as a practical alternative for space mission planning, provides new insights into orbital mechanics conservation laws, and opens pathways for analytical treatment of perturbed multi-body systems.

References

Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics (2nd ed.) Springer-Verlag, New York. https://doi.org/10.1007/978-1-4757-2063-1 DOI: https://doi.org/10.1007/978-1-4757-2063-1

Battin, R. H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, Reston, VA. DOI: https://doi.org/10.2514/4.861543

Celletti, A., & Chierchia, L. (2019). Quasi-periodic motions in celestial mechanics. Celestial Mechanics and Dynamical Astronomy, 131(4), 1-25.

Chauvenet, W. (1863). A Manual of Spherical and Practical Astronomy. J.B. Lippincott & Co., Philadelphia.

Chen, L., & Kumar, R. (2021). Machine learning approaches to orbital mechanics prediction. Acta Astronautica, 185, 112-128.

Cheng, A. F., Michel, P., Jutzi, M., Rivkin, A. S., Stickle, A., Barnouin, O., Ernst, C., Atchison, J., Pravec, P., and Richardson, D. C. (2015). Asteroid impact and deflection assessment mission. Acta Astronautica, 115:262269. https://doi.org/10.1016/j.actaastro.2015.05.021. DOI: https://doi.org/10.1016/j.actaastro.2015.05.021

Glassmeier, K. H., Boehnhardt, H., Koschny, D., Kuhrt, E., and Richter, I. (2007). The rosetta mission: Flying towards the origin of the solar system. Space Science Reviews, 128(1-4):121. https://doi.org/10.1007/s11214-006-9140-8 DOI: https://doi.org/10.1007/s11214-006-9140-8

Goldstein, H., Poole, C., and Safko, J. (2002). Classical Mechanics. Addison Wesley, San Francisco, 3rd edition.

Hairer, E., Lubich, C., and Wanner, G. (2006). Geometric Numerical Integration: Structure- Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computa- tional Mathematics. Springer, Berlin, 2nd edition. https://doi.org/10.1007/3-540-30666-8 DOI: https://doi.org/10.1007/3-540-30666-8

Izzo, D., Mrtens, M., & Pan, B. (2019). A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics, 3(4), 287-299 DOI: https://doi.org/10.1007/s42064-018-0053-6

Margenau, H. and Murphy, G. M. (1961). The Mathematics of Physics and Chemistry. D. Van Nostrand Company, Princeton, NJ, 2nd edition.

Meeus, J., & Jones, A. (2020). Hybrid analytical-numerical methods in modern astrodynamics. Journal of Guidance,

Control, and Dynamics, 43(8), 1456-1467

Micheli, M., Farnocchia, D., Meeus, J., Buie, M., Hainaut, O. R., Prialnik, D., Schorghofer, N., Weaver, H. A., Chodas, P. W., Kleyna, J. T., et al. (2018). Non-gravitational acceleration in the trajectory of 1i/2017 u1 (oumuamua). Nature, 559(7713):223226. https://doi.org/10.1038/s41586-018-0254-4. DOI: https://doi.org/10.1038/s41586-018-0254-4

Moon, P. and Spencer, D. E. (1961). Field Theory Handbook. Springer-Verlag, Berlin. Morse, P. M. and Feshbach, H. (1953). Methods of Theoretical Physics. McGraw-Hill, NewYork. DOI: https://doi.org/10.1007/978-3-642-53060-9

Morbidelli, A. (2002). Modern celestial mechanics: Aspects of solar system dynamics. Taylor & Francis.

Murray, C. D. and Dermott, S. F. (2000). Solar System Dynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139174817 DOI: https://doi.org/10.1017/CBO9781139174817

Omaghali, N. E., Omonile, J. F., and Adebesin, B. O. (2016). Velocity and acceleration in elliptic cylindrical coordinates. Archives of Applied Science Research, 8(3):7274

Omonile, J. F., Adebayo, J. O., and Bakare, T. S. (2014). Velocity and acceleration in prolate spheroidal coordinates. Archives of Physics Research, 5(1):5659.

Roa, J., & Pelez, J. (2021). Adaptive integration schemes for highly eccentric orbital motion. Celestial Mechanics and Dynamical Astronomy, 133(2), 1-18.

Rodriguez, M., Smith, K., & Lee, S. (2020). Perturbation theory in elliptical coordinates for satellite dynamics. Advances in Space Research, 66(7), 1623-1635.

San-Juan, J. F., Abad, A., & Brumberg, V. A. (2020). Lie-series solutions in planetary theories. Astronomy & Astrophysics, 642, A25.

Wisdom, J., & Hernandez, D. (2022). Coordinate-invariant formulations for N-body gravitational dynamics. Monthly Notices of the Royal Astronomical Society, 515(3), 3639-3647.

Zhang, W., & Patel, N. (2022). AI-enhanced trajectory optimization using elliptical coordinate systems. Journal of Spacecraft and Rockets, 59(4), 1205-1218.

Published
2025-08-19
How to Cite
Koffa, D. J., Ogunjobi, O., Onechojo, V. O., Gwani, M. M., Eghaghe, S. O., Ahmed-Ade, F., & Olorunleke, I. E. (2025). A UNIFIED FRAMEWORK FOR ELLIPTICAL COORDINATE SYSTEMS IN CELESTIAL MECHANICS: ANALYTICAL SOLUTIONS, NUMERICAL VALIDATION, AND APPLICATIONS TO MULTI-BODY ORBITAL DYNAMICS. FUDMA JOURNAL OF SCIENCES, 9(8), 248 - 260. https://doi.org/10.33003/fjs-2025-0908-3751