A NOVEL CAPUTO FRACTIONAL-ORDER MODEL OF CHOLERA TRANSMISSION WITH BEHAVIORAL AND IMMUNOLOGICAL DYNAMICS USING THE LAPLACE–ADOMIAN DECOMPOSITION METHOD

Authors

Keywords:

Mathematical model, Vibrio cholera, Hygiene, Laplace-Adomian Decomposition Method, Caputo fractional-order, Epidemiological

Abstract

Cholera, spread by the bacterium Vibrio cholerae, is still a major health problem in places with unsanitary conditions. The way it spreads relies on the host’s immunity, certain environmental aspects and how clean people keep themselves and their properties.  The model in this study applies Caputo fractional-order derivatives to capture the immunity of people, their hygiene, memory in diseases and various ways of controlling them.  It includes the study of how people respond and interact with their environment and disease-related factors in a mathematical way. We perform solid analyses on the model, confirming the existence, uniqueness, positivity and boundedness of its solutions. A basic reproduction number is calculated to find out if the disease will continue to exist in a population. Analyzing what makes a disease-free state or an endemic equilibrium stable tells us how to best control the disease. Using the Laplace-Adomian Decomposition Method for solving the nonlinear fractional system results in simulations that match actual cholera behavior.  Findings point out that a decline in immunity and better hygiene help reduce how cholera spreads. The framework supports an understanding of cholera spread and is also useful for examining other diseases that are highly complex.

Dimensions

Adedeji, J., & Olayiwola, M. O. (2024). On analysis of a mathematical model of cholera using Caputo fractional order: On analysis of a mathematical model of cholera. Journal of the Nigerian Mathematical Society, 43(3), 287-309.

Adeniyi, E. O. (2024). Transmission dynamics and control of cholera in Africa: A mathematical modelling approach.

Ahmed, I., Akgül, A., Jarad, F., Kumam, P., & Nonlaopon, K. (2023). A Caputo-Fabrizio fractional-order cholera model and its sensitivity analysis. Mathematical Modelling and Numerical Simulation with Applications, 3(2), 170-187.

Ahmad, A., Abbas, F., Farman, M., Hincal, E., Ghaffar, A., Akgül, A., & Hassani, M. K. (2024). Flip bifurcation analysis and mathematical modeling of cholera disease by taking control measures. Scientific Reports, 14(1), 10927.

Alhaji, M. L., Abdullah, F. A., & Mansor, S. N. A. (2024, August). Application of the Laplace-Adomian decomposition method to the dynamics of cholera transmission. In American Institute of Physics Conference Series (Vol. 3189, No. 1, p. 030015).

Ali, A. H., Ahmad, A., Abbas, F., Hincal, E., Ghaffar, A., Batiha, B., & Neamah, H. A. (2025). Modeling the behavior of a generalized cholera epidemic model with asymptomatic measures for early detection. PLoS One, 20(3), e0319684.

Alharbi, M. F. (2025). Neural network procedures for the cholera disease system with public health mediations. Computers in Biology and Medicine, 184, 109471.

Anderson, R. M. & Farrell, S.H. (2018). Helminth lifespan interacts with non-compliance in reducing the effectiveness of anthelmintic treatment. Parasites & vectors, 11(1), 66.

Anteneh, L. M., Lokonon, B. E., & Kakaï, R. G. (2024). Modelling techniques in cholera epidemiology: A systematic and critical review. Mathematical Biosciences, 109210.

Avwerosuo, A. A., & Okedoye, A. M. (2023). Mathematical modelling of the dynamics and control of communicable diseases with emphasis on cholera epidemics. Asian Journal of Applied Science and Technology (AJAST), 7(4), 99-119.

Anwar, N., Fatima, A., Raja, M. A. Z., Ahmad, I., Shoaib, M., & Kiani, A. K. (2025). Novel exploration of machine learning solutions with supervised neural structures for nonlinear cholera epidemic probabilistic model with quarantined impact. The European Physical Journal Plus, 140(1), 64..

Bashiru, K. A., Kolawole, M. K., Ojurongbe, T. A., Adekunle, H. O., Adeboye, N. O., & Afolabi, H. A. (2023). Conceptual analysis of a fractional order epidemic model of measles capturing logistic growth using Laplace Adomian decomposition method. Journal of Applied Computer Science & Mathematics, 17(35).

Cai, G., Li, Y. & Yu, H., (2012). Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dynamics, 67(3), 2171-2182.

Dhandapani, P. B., Leiva, V., Martin-Barreiro, C., & Rangasamy, M. (2023). On a novel dynamic of a SIVR model using a Laplace Adomian decomposition based on a vaccination strategy. Fractal and Fractional, 7(5), 407.

Eneh, S., Onukansi, F., Anokwuru, C., Ikhuoria, O., Edeh, G., Obiekwe, S., ... & Okpara, C. (2024). Cholera outbreak trends in Nigeria: Policy recommendations and innovative approaches to prevention and treatment. Frontiers in Public Health, 12, 146436

Farman, M., Sarwar, R., Nisar, K. S., Naik, P. A., Shahzeen, S., & Sambas, A. (2025). Global wave analysis of a fractional-order cholera disease model in society. Network Modeling Analysis in Health Informatics and Bioinformatics, 14(1), 15.

Ghosh, A., Das, P., Chakraborty, T., Das, P., & Ghosh, D. (2025). Developing cholera outbreak forecasting through qualitative dynamics: Insights into Malawi case study. Journal of Theoretical Biology, 605, 112097.

Kolawole, M. K. (2025). Mathematical dynamics of the (SVEITR) model, the impact of treatment and vaccination on cholera spread. Jurnal Diferensial, 7(1), 85-105.

Malik, S. (2024). Numerical performance of the fractional direct spreading cholera disease model: An artificial neural network approach. Fractal & Fractional, 8(7).

Montero, D. A., Vidal, R. M., Velasco, J., George, S., Lucero, Y., Gómez, L. A., ... & O’Ryan, M. (2023). Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Frontiers in Medicine, 10, 1155751

Mushanyu, J., Matsebula, L., & Nyabadza, F. (2024). Mathematical modeling of cholera dynamics in the presence of antimicrobial utilization strategy. Scientific Reports, 14(1), 1-22.

Nkwayep, C. H., Kakaï, R. G., & Bowong, S. (2024). Prediction and control of cholera outbreak: Study case of Cameroon. Infectious Disease Modelling, 9(3), 892-925.

Ojo, O. B., & Gbolahan, A. M. (2025). Contextualising cholera in Nigeria: Contemporary epidemiology, determinants and recommendations. ISA Journal of Medical Sciences (ISAJMS), 2(3), 57-68.

Onwunta, I. E., Ozota, G. O., Eze, C. A., Obilom, I. F., Okoli, O. C., Azih, C. N., & Agbo, E. L. (2025). Recurrent cholera outbreaks in Nigeria: A review of the underlying factors and redress. Decoding Infection and Transmission, 3, 100042.

Oweibia, M., Egberipou, T., Wilson, T. R., Timighe, G. C., & Ogbe, P. D. (2025). Factors associated with the propagation of cholera in epidemics across the geopolitical zones of Nigeria: A systematic review. medRxiv, 2025-05.

Ovi, M. A., Afilipoaei, A., & Wang, H. (2025). Estimating hidden cholera burden and intervention effectiveness. Bulletin of Mathematical Biology, 87(6), 1-30.

Rashid, S., Jarad, F., & Alsharidi, A. K. (2022). Numerical investigation of fractional-order cholera epidemic model with transmission dynamics via fractal–fractional operator technique. Chaos, Solitons & Fractals, 162, 112477.

Ratnayake, R. C. (2024). Case-area targeted intervention for the control of cholera epidemics in crises: From spatial mathematical modelling to field evaluation (Doctoral dissertation, London School of Hygiene & Tropical Medicine).

Shah, Z., Ullah, N., Jan, R., Alshehri, M. H., Vrinceanu, N., Antonescu, E., & Farhan, M. (2025). Existence and sensitivity analysis of a Caputo-Fabirizo fractional order vector-borne disease model. European Journal of Pure and Applied Mathematics, 18(2), 5687-5687.

Sit, B., Fakoya, B., & Waldor, M. K. (2022). Emerging concepts in cholera vaccine design. Annual Review of Microbiology, 76(1), 681-702

Trevisin, C., Lemaitre, J. C., Mari, L., Pasetto, D., Gatto, M., & Rinaldo, A. (2022). Epidemicity of cholera spread and the fate of infection control measures. Journal of the Royal Society Interface, 19(188), 20210844.

Wang, J. (2022). Mathematical models for cholera dynamics—A review. Microorganisms, 10(12), 2358.

Yunus, A. O., & Olayiwola, M. O. (2024). The analysis of a co-dynamic ebola and malaria transmission model using the Laplace Adomian decomposition method with Caputo fractional-order. Tanzania Journal of Science, 50(2), 224-243

Published

05-09-2025

How to Cite

A NOVEL CAPUTO FRACTIONAL-ORDER MODEL OF CHOLERA TRANSMISSION WITH BEHAVIORAL AND IMMUNOLOGICAL DYNAMICS USING THE LAPLACE–ADOMIAN DECOMPOSITION METHOD. (2025). FUDMA JOURNAL OF SCIENCES, 9(9), 66-77. https://doi.org/10.33003/fjs-2025-0909-3743

How to Cite

A NOVEL CAPUTO FRACTIONAL-ORDER MODEL OF CHOLERA TRANSMISSION WITH BEHAVIORAL AND IMMUNOLOGICAL DYNAMICS USING THE LAPLACE–ADOMIAN DECOMPOSITION METHOD. (2025). FUDMA JOURNAL OF SCIENCES, 9(9), 66-77. https://doi.org/10.33003/fjs-2025-0909-3743